Example #1
0
    def run(self, metadata):
        table = common.table_get(metadata, self.object.cube_id.table_id)
        if self.object.measure_type == "fact_column":
            col = common.col_get(sqlalchemy.Table(self.object.table_name, metadata), self.object.value_column)
            col_agregated = agregator[self.object.agregator](col)
        else:
            scalar = Word(alphanums + "_" + " " + ".")
            sql_func = ["sum", "max", "min", "count", "avg"]
            arith_operator = ["-", "*", "/", "+"]

            sql_function = oneOf(" ".join(sql_func))
            leftRdBr = Literal("(").suppress()
            rightRdBr = Literal(")").suppress()
            operator_arith = oneOf(" ".join(arith_operator))
            sqlexpression = (
                sql_function.setResultsName("sql_func")
                + leftRdBr
                + delimitedList(scalar, ",", combine=False)
                + rightRdBr
                | sql_function
                + leftRdBr
                + scalar
                + ZeroOrMore(operator_arith.setResultsName("arithmetic") + scalar)
                + rightRdBr
            )
            res = sqlexpression.parseString(self.object.value_sql)
            operators = []
            cols = []
            function = None
            for item in res:
                if str(item) == res.sql_func:
                    function = str(item)
                elif str(item) == res.arithmetic or str(item) in ["+", "-", "/", "*"]:
                    operators.append(str(item))
                else:
                    cols.append(common.measure_sql_exp_col(metadata, str(item)))
            operations = {"+": operator.add, "-": operator.sub, "/": operator.div, "%": operator.mod, "*": operator.mul}
            operators = [operations[name] for name in operators]
            ops_cols = zip(operators, cols[1:])
            col = reduce(lambda expr, op_col: op_col[0](expr, op_col[1]), ops_cols, cols[0])

            if function:
                col_agregated = agregator[function](col)
            else:
                col_agregated = col

        return [
            {
                "value": [(["measures", self.name], self.name, False)],
                "query": {"column": [col_agregated]},
                "axis_mapping": axis_map.column_fixed(0),
                "delta": 0,
                "format": self.object.formatstring,
            }
        ]
Example #2
0
    def run(self, metadata):
        table = common.table_get(metadata, self.object.cube_id.table_id)
        if self.object.measure_type == 'fact_column':
            col = common.col_get(sqlalchemy.Table(self.object.table_name,metadata), self.object.value_column)
            col_agregated = agregator[self.object.agregator](col)
        else:
            scalar = Word(alphanums+"_"+" "+".") 
            sql_func = ["sum","max","min","count","avg"]
            arith_operator = ["-","*","/","+"]
            
            sql_function = oneOf(' '.join(sql_func))
            leftRdBr = Literal("(").suppress()
            rightRdBr = Literal(")").suppress()
            operator_arith = oneOf(' '.join(arith_operator))
            sqlexpression = sql_function.setResultsName('sql_func') + leftRdBr + delimitedList(scalar,",",combine=False) + rightRdBr | sql_function + leftRdBr +  scalar + ZeroOrMore(operator_arith.setResultsName('arithmetic') + scalar) + rightRdBr 
            res = sqlexpression.parseString(self.object.value_sql)
            operators = []
            cols = []
            function = None
            for item in res:
                if str(item) == res.sql_func:
                    function = str(item)
                elif str(item) == res.arithmetic or str(item) in ["+","-","/","*"]:
                    operators.append(str(item))
                else:
                    cols.append(common.measure_sql_exp_col(metadata,str(item)))
            operations = {
                '+':operator.add,
                '-':operator.sub,
                '/':operator.div,
                '%':operator.mod,
                '*':operator.mul,
            }
            operators = [operations[name] for name in operators]
            ops_cols = zip(operators, cols[1:])
            col = reduce(lambda expr, op_col: op_col[0](expr, op_col[1]), ops_cols,cols[0]) 

            if function:
                col_agregated = agregator[function](col)
            else:
                col_agregated = col

        return [ {
            'value': [(['measures',self.name], self.name, False)],
            'query': {
                'column': [col_agregated]
            },
            'axis_mapping': axis_map.column_fixed(0),
            'delta': 0,
            'format':self.object.formatstring
        } ]
Example #3
0
    def _run_transform(self, metadata):
        """
            Compute axis values, and transform the main query according to axis
            values for this subset. The main query slicer is transformed to a
            single condition like: foreign_key in (...) and reapplied to axis
            values.
        """

        table, axis, mapping, result_axis = self._compute_axis(metadata, True)
        table2 = common.table_get(metadata, self.object.dimension_id.cube_id.table_id)
        sql_table = sqlalchemy.Table(self.object.table_id.column_link_id.table_id.table_db_name,metadata)
        col = common.col_get(sql_table, self.object.table_id.column_link_id)

        #
        # The result to be applied to the main query object
        #

        result = []
        for a in axis:
            k = tuple(list(a)[0][1:])
            mapping_axis = filter(lambda m: tuple(list(m)[:-1])==k, mapping)
            primary_keys = map(lambda x:list(x)[-1], mapping_axis)
            # To convert everything in to the string so that no conversion needed at later stage 
            # This is for the elements to be displayed in the rows and columns
            for i in range(len(a[0])):
                if a[0][i]:
                    if isinstance(a[0][i],int):
                        a[0][i] = str(a[0][i])
                    elif isinstance(a[0][i],float):
                        a[0][i] = str(int(a[0][i]))
                else:
                    a[0][i] = '/'
            a = list(a)
            if isinstance(a[-1],int):
                a[-1] = str(a[-1])
            elif isinstance(a[-1],float):
                a[-1] = str(int(a[-1]))
            a = tuple(a)
            primary_keys = map(lambda x: str(x),primary_keys)
            result.append( {
                'value': [a],
                'query': {
                          
                    'whereclause': [col.in_(primary_keys)],#.extend(result_axis['where_clause']),
                    'column': [sqlalchemy.literal('transform')],
                },
                'axis_mapping': axis_map.column_static(False),
                'delta':0,
            })
        return result
Example #4
0
 def run(self, metadata):
     table = common.table_get(metadata, self.object.table_id)
     return sqlalchemy.select(from_obj=[table], columns=[]), table
Example #5
0
    def _compute_axis(self, metadata, primarykey=False):
        """
            Compute axis values, and transform the main query in the same way
            to add this branch of the star for this subset. The mappers
            reassign to values.
        """

        #
        # Build a query on all tables of the hierarchy
        # It passes the hierarchy table_id browse object (olap_cube_table )
        #
        table = common.table_get(metadata, self.object.table_id)
        #
        # Implement the query for all sublevels
        # Return:
        #     [ (ID1, ID2, ID3, NAME, [PRIMARYKEY]) ]
        #
        result_axis = {}
        for slevel in self.sublevels:
            res = slevel.run(metadata, table)
            for key in res.keys():
                result_axis.setdefault(key, [])
                result_axis[key] += res[key]
        cols = []
        axis_select = sqlalchemy.select(from_obj=[table], columns=[], distinct=True)
        for where in result_axis.get('where_clause', []):
            axis_select.append_whereclause(where)
        for col in result_axis.get('column', []):
            axis_select.append_column(col)
        for group in result_axis.get('group_by', []):
            axis_select.append_group_by(group)
        # TODO: find a way to do: axis_select2 = axis_select.copy()
        axis_select2 = sqlalchemy.select(from_obj=[table], columns=[], distinct=True)
        for where in result_axis.get('where_clause', []):
            axis_select2.append_whereclause(where)
        for col in result_axis.get('column', []):
            axis_select2.append_column(col)
        for group in result_axis.get('group_by', []):
            axis_select2.append_group_by(group)
        # TODO: end
        #metadata.bind.echo = True
        axis_select2.append_column(result_axis['column_name'][-1].label('axis_name'))
        query = axis_select2.execute()
        result = query.fetchall()
          
        def _tuple_define(x):
            y=list(x)
            if y[-1] == None:
                y[-1] = '/'
            elif isinstance(y[-1],float):
                y[-1] = str (int(y[-1]))
            else:
                y[-1] = self._to_unicode(y[-1])
                y[-1] = tools.ustr(y[-1])
            return ([self.level]+y[:-1]),y[-1]
             
        axis = map(_tuple_define, result)
        # Gives the mapping

        primary_key = ''
        if primarykey:
            if self.object.table_id.column_link_id.related_to:
                primary_key = self.object.table_id.column_link_id.related_to
            else:
                primary_key = self.object.table_id.column_link_id.table_id
            tableprim = sqlalchemy.Table(primary_key.table_db_name, metadata)
            pk = common.get_primary_key(primary_key)
            col = common.col_get(tableprim,pk)
            axis_select.append_column(col.label('axis_primarykey'))
            query = axis_select.execute()
            result = query.fetchall()
        else:
            # To find the primary key that suits best as per the given criteria
            raise 'Primary key table not made in the hierarchy'
            
        maps = []
        position =0
        for mapping in result_axis['axis_mapping']:
            mapinst = mapping(result, position)
            maps.append(mapinst)
            position += mapinst.position_get()
        result_axis['axis_mapping'] = maps
#
#       #
#       # Apply the filters on the main query object due to this block
#       #
#
#       maps = []
#       position =0
#       for mapping in result_axis['axis_mapping']:
#           mapinst = mapping(result, position)
#           maps.append(mapinst)
#           position += mapinst.position_get()
#       result_axis['axis_mapping'] = maps
#       print '*'*50
#       print table, result, result_axis
        return table, axis, result ,result_axis
Example #6
0
 def run(self, metadata):
     table = common.table_get(metadata, self.object.table_id)
     return sqlalchemy.select(from_obj = [table], columns=[]),table