Example #1
0
def calculate_locations():
    ################
    #  Parameters  #
    ################
    files = args.files

    # Check parameters
    if not files or len(files) < 1 or files[0] == "":
        raise ValueError("Please specify at least one filename (%s)" % files)

    if isinstance(files, basestring):
        files = [files]

    # Expand wildcards
    files_expanded = []
    for s in files:
        files_expanded += glob(s)
    files = sorted(list(set(files_expanded)))  # Remove duplicates

    # files = filter(lambda f: "EfficientNetINB0_Level6" in f or "EfficientNetB0_Level6" in f, files)
    # files = filter(lambda f: f in ["/media/ldwg/DataBig/data/WZL/Features/ResNet50V2_Stack4.h5"], files)

    if args.index is not None:
        files = files[args.index::args.total]

    with tqdm(total=len(files), file=sys.stderr) as pbar:
        for features_file in files:
            pbar.set_description(os.path.basename(features_file))
            # Check parameters
            if features_file == "" or not os.path.exists(
                    features_file) or not os.path.isfile(features_file):
                logger.error("Specified feature file does not exist (%s)" %
                             features_file)
                continue

            try:
                # Load the file
                patches = PatchArray(features_file)

                models = [AnomalyModelSVG(), AnomalyModelMVG()]

                # Calculate and save the locations
                for fake in [True, False]:
                    patches.calculate_patch_locations(fake=fake)
                    for cell_size in [0.2, 0.5]:
                        key = "%.2f" % cell_size
                        if fake: key = "fake_" + key

                        patches.calculate_rasterization(cell_size, fake=fake)

                        models.append(
                            AnomalyModelSpatialBinsBase(AnomalyModelSVG,
                                                        patches,
                                                        cell_size=cell_size,
                                                        fake=fake))
                        models.append(
                            AnomalyModelSpatialBinsBase(AnomalyModelMVG,
                                                        patches,
                                                        cell_size=cell_size,
                                                        fake=fake))

                        # BalancedDistribution uses SVG mean as learning threshold
                        if patches.contains_mahalanobis_distances and "SpatialBin/SVG/%s" % key in patches.mahalanobis_distances.dtype.names:
                            threshold_learning = int(
                                np.mean(patches.mahalanobis_distances[
                                    "SpatialBin/SVG/%s" % key]))
                            models.append(
                                AnomalyModelSpatialBinsBase(
                                    lambda:
                                    AnomalyModelBalancedDistributionSVG(
                                        initial_normal_features=10,
                                        threshold_learning=threshold_learning,
                                        pruning_parameter=0.5),
                                    patches,
                                    cell_size=cell_size,
                                    fake=fake))

                # BalancedDistribution uses SVG mean as learning threshold
                if patches.contains_mahalanobis_distances and "SVG" in patches.mahalanobis_distances.dtype.names:
                    threshold_learning = int(
                        np.mean(patches.mahalanobis_distances["SVG"]))
                    models.append(
                        AnomalyModelBalancedDistributionSVG(
                            initial_normal_features=500,
                            threshold_learning=threshold_learning,
                            pruning_parameter=0.5))

                # # For BalancedDistributionTest
                # if patches.contains_mahalanobis_distances and "SVG" in patches.mahalanobis_distances.dtype.names:
                #     for threshold_learning in np.linspace(np.min(patches.mahalanobis_distances["SVG"]), np.max(patches.mahalanobis_distances["SVG"]), 5, dtype=np.int):
                #         for pruning_parameter in [0.2, 0.5, 0.8]:
                #             for initial_normal_features in [10, 500, 1000]:
                #                 models.append(AnomalyModelBalancedDistributionSVG(initial_normal_features=initial_normal_features, threshold_learning=threshold_learning, pruning_parameter=pruning_parameter))

                # if patches.contains_mahalanobis_distances and "MVG" in patches.mahalanobis_distances.dtype.names:
                #     for threshold_learning in np.linspace(np.min(patches.mahalanobis_distances["MVG"]), np.max(patches.mahalanobis_distances["MVG"]), 5, dtype=np.int):
                #         for pruning_parameter in [0.2, 0.5, 0.8]:
                #             for initial_normal_features in [10, 500, 1000]:
                #                 models.append(AnomalyModelBalancedDistribution(initial_normal_features=initial_normal_features, threshold_learning=threshold_learning, pruning_parameter=pruning_parameter))

                with tqdm(total=len(models), file=sys.stderr) as pbar2:
                    for m in models:
                        try:
                            pbar2.set_description(m.NAME)
                            logger.info("Calculating %s" % m.NAME)

                            model, mdist = m.is_in_file(features_file)

                            if not model:
                                m.load_or_generate(patches, silent=False)
                            elif not mdist:
                                logger.info("Model already calculated")
                                m.load_from_file(features_file)
                                m.patches = patches
                                m.calculate_mahalanobis_distances()
                            else:
                                logger.info(
                                    "Model and mahalanobis distances already calculated"
                                )

                        except (KeyboardInterrupt, SystemExit):
                            raise
                        except:
                            logger.error(
                                "%s: %s" %
                                (features_file, traceback.format_exc()))
                        pbar2.update()

            except (KeyboardInterrupt, SystemExit):
                raise
            except:
                logger.error("%s: %s" %
                             (features_file, traceback.format_exc()))
            pbar.update()
def calculate_locations():
    ################
    #  Parameters  #
    ################
    files = args.files

    # Check parameters
    if not files or len(files) < 1 or files[0] == "":
        raise ValueError("Please specify at least one filename (%s)" % files)

    if isinstance(files, basestring):
        files = [files]

    # Expand wildcards
    files_expanded = []
    for s in files:
        files_expanded += glob(s)
    files = sorted(list(set(files_expanded)))  # Remove duplicates

    files = filter(lambda f: not "EfficientNet" in f, files)

    if args.index is not None:
        files = files[args.index::args.total]

    with tqdm(total=len(files), file=sys.stderr) as pbar:
        for features_file in files:
            pbar.set_description(os.path.basename(features_file))
            # Check parameters
            if features_file == "" or not os.path.exists(
                    features_file) or not os.path.isfile(features_file):
                logger.error("Specified feature file does not exist (%s)" %
                             features_file)
                continue

            try:
                # Load the file
                patches = PatchArray(features_file)

                models = [AnomalyModelSVG()]

                # Calculate and save the locations
                for fake in [False]:
                    patches.calculate_patch_locations(fake=fake)
                    for cell_size in [0.2, 0.5]:
                        patches.calculate_rasterization(cell_size, fake=fake)

                        models.append(
                            AnomalyModelSpatialBinsBase(AnomalyModelSVG,
                                                        cell_size=cell_size,
                                                        fake=fake))
                        # models.append(AnomalyModelSpatialBinsBase(lambda: AnomalyModelBalancedDistributionSVG(initial_normal_features=10, threshold_learning=threshold_learning, pruning_parameter=0.5), cell_size=cell_size, fake=fake))

                # Calculate anomaly models
                if patches.contains_mahalanobis_distances and "SVG" in patches.mahalanobis_distances.dtype.names:
                    threshold_learning = int(
                        np.mean(patches.mahalanobis_distances["SVG"]))
                    models.append(
                        AnomalyModelBalancedDistributionSVG(
                            initial_normal_features=500,
                            threshold_learning=threshold_learning,
                            pruning_parameter=0.5))

                with tqdm(total=len(models), file=sys.stderr) as pbar2:
                    for m in models:
                        try:
                            pbar2.set_description(m.NAME)
                            logger.info("Calculating %s" % m.NAME)

                            model, mdist = m.is_in_file(features_file)

                            if not model:
                                m.load_or_generate(patches, silent=True)
                            elif not mdist:
                                logger.info("Model already calculated")
                                m.load_from_file(features_file)
                                m.patches = patches
                                m.calculate_mahalanobis_distances()
                            else:
                                logger.info(
                                    "Model and mahalanobis distances already calculated"
                                )

                        except (KeyboardInterrupt, SystemExit):
                            raise
                        except:
                            logger.error(
                                "%s: %s" %
                                (features_file, traceback.format_exc()))
                        pbar2.update()

            except (KeyboardInterrupt, SystemExit):
                raise
            except:
                logger.error("%s: %s" %
                             (features_file, traceback.format_exc()))
            pbar.update()