Example #1
0
 def test_continuous_count(self):
     arr1 = nparr([False, True, True, False, True, False])
     assert numpy.array_equal(
         ArrayIndicator.consecutive_count_of_True(arr1), [0, 1, 2, 0, 1, 0])
     arr1 = nparr([True, True, True, False, True, True])
     assert numpy.array_equal(
         ArrayIndicator.consecutive_count_of_True(arr1), [1, 2, 3, 0, 1, 2])
Example #2
0
def plot_df_with_min_max(df):
    fig, ax = plt.subplots()
    val = StockAxisPlot((fig, ax), df)
    is_min = ArrayIndicator.is_min_poses(df.low.values, 5)
    is_max = ArrayIndicator.is_max_poses(df.high.values, 5)
    pos_shift = (max(df.high) - min(df.low)) / 30

    is_min_sr = df.low[is_min]
    is_max_sr = df.high[is_max]

    val.add_scatter_point('test', is_min_sr - pos_shift, color='b', marker='^')
    val.add_scatter_point('test', is_max_sr + pos_shift, color='b', marker='v')
    val.plot()
    plt.show()
Example #3
0
 def test_min_poses(self):
     arr = numpy.arange(4)
     arr[0] = 10
     arr = numpy.concatenate((arr, arr[::-1]))
     max_arr = ArrayIndicator.is_max_poses(arr, 5)
     assert numpy.all(
         max_arr == [False, False, False, True, True, False, False, False])
Example #4
0
 def test_len_and_slope(self):
     arr1 = nparr([1, 2, 1, 0, 1, 2, 3, 2, 1, 2, 3, 4], dtype=numpy.float64)
     val2 = ArrayIndicator.trend_len_and_slope(arr1, window_len=5)
     assert numpy.array_equal(val2[0], [0, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 3])
     assert numpy.allclose(
         val2[1],
         [0., 1., 0., -0.33333333, 1., 1., 1., -1., -1., 1., 1., 1.])
Example #5
0
 def test_even_count(self):
     val = ArrayIndicator.even_count(numpy.asarray([1, 1, 1, 0, 0]))
     numpy.array_equal(val, [0, 1, 2, 0, 1])
Example #6
0
 def test_drop_count(self):
     val = ArrayIndicator.rise_count(numpy.asarray([3, 2, 1, 2, 1]))
     numpy.array_equal(val, [0, 1, 2, 0, 1])
Example #7
0
 def test_mdd_poses(self):
     arr1 = nparr([1, 2, 1, 1.5, 0, 1, 2])
     poses = ArrayIndicator.mdd_poses(arr1)
     assert poses == (1, 4)
Example #8
0
 def even_count_of_previous_days(df):
     arr = df.close.values
     is_even = (arr == np_shift(arr, 1, 0))
     count = ArrayIndicator.consecutive_count_of_True(is_even)
     return np_shift(count, 1, 0)
Example #9
0
 def down_count_of_previous_days(df):
     arr = df.close.values
     is_up = arr - np_shift(arr, 1, 0) < 0
     count = ArrayIndicator.consecutive_count_of_True(is_up)
     return np_shift(count, 1, 0)
Example #10
0
    def _support_high_low_strength(df, window_len):
        is_max = ArrayIndicator.is_max_poses(df.high, window_len)
        is_min = ArrayIndicator.is_min_poses(df.low, window_len)

        pass