def run_error_analyzer_on_models(X_train, y_train, X_test, y_test, feature_names, model_task, filters=None, composite_filters=None, matrix_features=None, quantile_binning=False, num_bins=BIN_THRESHOLD, metric=None): if model_task == ModelTask.CLASSIFICATION: models = create_models_classification(X_train, y_train) else: models = create_models_regression(X_train, y_train) for model in models: categorical_features = [] run_error_analyzer(model, X_test, y_test, feature_names, categorical_features, model_task=model_task, filters=filters, composite_filters=composite_filters, matrix_features=matrix_features, quantile_binning=quantile_binning, num_bins=num_bins, metric=metric)
def run_error_analyzer_on_models(X_train, y_train, X_test, y_test, feature_names, model_task, filters=None, composite_filters=None, matrix_features=None): if model_task == ModelTask.CLASSIFICATION: models = create_models_classification(X_train, y_train) else: models = create_models_regression(X_train, y_train) for model in models: categorical_features = [] run_error_analyzer(model, X_test, y_test, feature_names, categorical_features, model_task=model_task, filters=filters, composite_filters=composite_filters, matrix_features=matrix_features)
def test_error_report_housing(self): X_train, X_test, y_train, y_test, feature_names = \ create_housing_data() models = create_models_regression(X_train, y_train) for model in models: categorical_features = [] run_error_analyzer(model, X_test, y_test, feature_names, categorical_features)
def test_importances_boston(self): X_train, X_test, y_train, y_test, feature_names = \ create_boston_data() models = create_models_regression(X_train, y_train) for model in models: categorical_features = [] run_error_analyzer(model, X_test, y_test, feature_names, categorical_features)
def test_modelanalysis_boston(self, manager_type): x_train, x_test, y_train, y_test, feature_names = \ create_boston_data() x_train = pd.DataFrame(x_train, columns=feature_names) x_test = pd.DataFrame(x_test, columns=feature_names) models = create_models_regression(x_train, y_train) x_train[LABELS] = y_train x_test[LABELS] = y_test manager_args = {DESIRED_RANGE: [10, 20]} for model in models: run_model_analysis(model, x_train, x_test, LABELS, ['RM'], manager_type, manager_args)
def test_error_report_housing_pandas(self, filter_features): X_train, X_test, y_train, y_test, feature_names = \ create_housing_data() X_train = create_dataframe(X_train, feature_names) X_test = create_dataframe(X_test, feature_names) models = create_models_regression(X_train, y_train) for model in models: categorical_features = [] run_error_analyzer(model, X_test, y_test, feature_names, categorical_features, filter_features=filter_features)