def runMC(length): print 'Markov Chain length %d:' % length counts, immScores = init() startTime = time.time() coding, noncoding = findLongORFs(genome) counts = buildMarkovChain(counts, coding, noncoding, length) buildTime = time.time() approved, suspect = glimmer(genome, counts, immScores, length) endTime = time.time() print ' %0.2fs total (%0.2fs to build, %0.2fs to run)' % (endTime-startTime, buildTime-startTime, endTime-buildTime) writeORFs(approved, suspect) compareResults.compare('trueORFs.txt', 'predicted.txt') print ''
def runIMM(): print 'IMM max length %d:' % maxLength #maxLength = maxImmLength counts, immScores = init() startTime = time.time() coding, noncoding = findLongORFs(genome) counts = buildIMM(counts, coding, noncoding) buildTime = time.time() approved, suspect = glimmer(genome, counts, immScores) endTime = time.time() print ' %0.2fs total (%0.2fs to build, %0.2fs to run)' % (endTime-startTime, buildTime-startTime, endTime-buildTime) writeORFs(approved, suspect) compareResults.compare('trueORFs.txt', 'predicted.txt') print ''
def runMC(length): ''' Run the fixed-length Markov model classifier and print the accuracy of the results. ''' print 'Markov Chain length %d:' % length counts, immScores = init() startTime = time.time() coding, noncoding = findLongORFs(genome) counts = buildMarkovChain(counts, coding, noncoding, length) buildTime = time.time() approved, suspect = glimmer(genome, counts, immScores, length) endTime = time.time() print ' %0.2fs total (%0.2fs to build, %0.2fs to run)' % (endTime-startTime, buildTime-startTime, endTime-buildTime) writeORFs(approved, suspect) compareResults.compare(trueFile, 'predicted.txt') print ''
def runIMM(): ''' Run the IMM classifier and print the accuracy of the results. ''' print 'IMM max length %d:' % maxLength counts, immScores = init() startTime = time.time() coding, noncoding = findLongORFs(genome) counts = buildIMM(counts, coding, noncoding) buildTime = time.time() approved, suspect = glimmer(genome, counts, immScores) endTime = time.time() print ' %0.2fs total (%0.2fs to build, %0.2fs to run)' % (endTime-startTime, buildTime-startTime, endTime-buildTime) writeORFs(approved, suspect) compareResults.compare(trueFile, 'predicted.txt') print ''
def runMC(length): ''' Run the fixed-length Markov model classifier and print the accuracy of the results. ''' print 'Markov Chain length %d:' % length counts, immScores = init() startTime = time.time() coding, noncoding = findLongORFs(genome) counts = buildMarkovChain(counts, coding, noncoding, length) buildTime = time.time() approved, suspect = glimmer(genome, counts, immScores, length) endTime = time.time() print ' %0.2fs total (%0.2fs to build, %0.2fs to run)' % ( endTime - startTime, buildTime - startTime, endTime - buildTime) writeORFs(approved, suspect) compareResults.compare(trueFile, 'predicted.txt') print ''
def runIMM(): ''' Run the IMM classifier and print the accuracy of the results. ''' print 'IMM max length %d:' % maxLength counts, immScores = init() startTime = time.time() coding, noncoding = findLongORFs(genome) counts = buildIMM(counts, coding, noncoding) buildTime = time.time() approved, suspect = glimmer(genome, counts, immScores) endTime = time.time() print ' %0.2fs total (%0.2fs to build, %0.2fs to run)' % ( endTime - startTime, buildTime - startTime, endTime - buildTime) writeORFs(approved, suspect) compareResults.compare(trueFile, 'predicted.txt') print ''
def runIterativeMC(length): ''' Repeatedly train on the set of predicted ORFs, and use a fixed-length MM to predict a new set of ORFs. Continue until the set of predicted ORFs does not change. ''' print 'Iterative MC length %d:' % length coding, noncoding = findLongORFs(genome) oldORFs = [] i = 0 for x in xrange(10): i += 1 print ' Iteration %d' % i counts, immScores = init() startTime = time.time() print ' Training on %d coding, %d noncoding...' % (len(coding), len(noncoding)) counts = buildMarkovChain(counts, coding, noncoding, length) buildTime = time.time() print ' Done, %0.2fs' % (buildTime - startTime) print ' Calculating ORFs...' approved, suspect = glimmer(genome, counts, immScores, length) endTime = time.time() print ' Done, %0.2fs' % (endTime - buildTime) print ' Found %d approved, %d suspected' % (len(approved), len(suspect)) writeORFs(approved, suspect) compareResults.compare(trueFile, 'predicted.txt') print '' newORFs = approved + suspect if noChange(oldORFs, newORFs): print ' Converged' break else: coding, noncoding = updateORFs(approved) oldORFs = newORFs print 'Completed after %d iterations' % i
def runIterativeMC(length): ''' Repeatedly train on the set of predicted ORFs, and use a fixed-length MM predict a new set of ORFs. Continue until the set of predicted ORFs does not change. ''' print 'Iterative MC length %d:' % length coding, noncoding = findLongORFs(genome) oldORFs = [] i = 0 for x in xrange(10): i += 1 print ' Iteration %d' % i counts, immScores = init() startTime = time.time() print ' Training on %d coding, %d noncoding...' % (len(coding), len(noncoding)) counts = buildMarkovChain(counts, coding, noncoding, length) buildTime = time.time() print ' Done, %0.2fs' % (buildTime-startTime) print ' Calculating ORFs...' approved, suspect = glimmer(genome, counts, immScores, length) endTime = time.time() print ' Done, %0.2fs' % (endTime-buildTime) print ' Found %d approved, %d suspected' % (len(approved), len(suspect)) writeORFs(approved, suspect) compareResults.compare('trueORFs.txt', 'predicted.txt') print '' newORFs = approved+suspect if noChange(oldORFs, newORFs): print ' Converged' break else: coding, noncoding = updateORFs(approved) oldORFs = newORFs print 'Completed after %d iterations' % i