#model.answer = spa.State(D, vocab=vocab_concepts,feedback=1,feedback_synapse=.05) # /for count feedback=.8
    
            
    #set the inputs to the model (bypassing the need for a visual system)
    #model.input = spa.Input(goal=goal_func, target=target_func, arg1=arg1_func, arg2=arg2_func)
    #from count model
    model.input = spa.Input(vision=vision_input_func,goal=goal_input_func)

    #Number memory
    model.number_memory = assoc_mem_acc.AssociativeMemoryAccumulator(input_vocab = vocab_numbers, wta_output=True, status_scale=.7,threshold=.1,status_feedback=.3)

    #Alphabet memory
    model.letter_memory = assoc_mem_acc.AssociativeMemoryAccumulator(input_vocab = vocab_letters, wta_output=True, status_scale=.7,threshold=.2,status_feedback=.3)
        
    #Comparison
    model.comparison = compare_acc_zbrodoff.CompareAccumulator(vocab_compare = vocab_concepts,status_scale = .4,status_feedback = .2, status_feedback_synapse=.05, threshold_cleanup=.1)

    #final Comparison
    model.comparison2 = compare_acc_zbrodoff.CompareAccumulator(vocab_compare = vocab_concepts,status_scale = .6,status_feedback = .2, status_feedback_synapse=.05, threshold_cleanup=.1)

    #Motor
    model.motor = spa.State(Dlow,vocab=vocab_motor,feedback=1) #motor state       
    
  
    #bcm_model
    model.in_layer = spa.State(D,vocab=vocab_problems,seed=1)
    model.correct = spa.State(D, vocab=vocab_problems,seed=1)
    model.stoplearn = nengo.Node(0,size_out=1)

    #model.stim = spa.Input(in_layer=input_func,correct=input_func)         
 
Example #2
0
    #set the inputs to the model (bypassing the need for a visual system)
    model.input = spa.Input(goal=goal_func,
                            target=target_func,
                            arg1=arg1_func,
                            arg2=arg2_func)

    #Declarative Memory
    model.declarative = assoc_mem_acc.AssociativeMemoryAccumulator(
        input_vocab=vocab_problems,
        wta_output=True,
        wta_inhibit_scale=10,
        threshold=.5)

    #Comparison
    model.comparison = compare_acc_zbrodoff.CompareAccumulator(
        vocab_compare=vocab_concepts, status_scale=.6, status_feedback=.6)

    #Motor
    model.motor = spa.State(dimensions=Dlow, vocab=vocab_motor)

    #Basal Ganglia & Thalamus
    actions = spa.Actions(

        #encode and retrieve
        a_retrieve=
        'dot(goal,START) - declarative_status -.2 --> goal=START+RETRIEVE, declarative=ITEM1*arg1 + ITEM2*arg2',
        #a_retrieve= goal equals START, - retrieval status - .2 --> switch goal to retrieve, declare current problem as arg1 + arg2
        b_answer_retrieved=
        'dot(goal,RETRIEVE) + declarative_status - .3 --> goal=(.8*RETRIEVE)+COMPARE, answer=4*~RESULT*declarative',
        # b_answer_retrieved= if goal =retrieve - retrieval status - .3 --> switch goal to COMPARE, retrieve answer corresponding to current problem