Example #1
0
    def represent_in_local_coordinates(self, point):
        """Represents a point in the frame's local coordinate system.

        Parameters
        ----------
        point : :obj:`list` of :obj:`float`
            A point in world XY.

        Returns
        -------
        :obj:`list` of :obj:`float`
            A point in the local coordinate system of the frame.

        Examples
        --------
        >>> f = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
        >>> pw1 = [2, 2, 2]
        >>> pf = f.represent_in_local_coordinates(pw1)
        >>> pw2 = f.represent_in_global_coordinates(pf)
        >>> allclose(pw1, pw2)
        True

        """
        pt = Point(*subtract_vectors(point, self.point))
        T = inverse(matrix_from_basis_vectors(self.xaxis, self.yaxis))
        pt.transform(T)
        return pt
Example #2
0
    def represent_in_global_coordinates(self, point):
        """Represents a point from local coordinates in the world coordinate system.

        Parameters
        ----------
        point : :obj:`list` of :obj:`float`
            A point in local coordinates.

        Returns
        -------
        :obj:`list` of :obj:`float`
            A point in the world coordinate system.

        Examples
        --------
        >>> f = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
        >>> pw1 = [2, 2, 2]
        >>> pf = f.represent_in_local_coordinates(pw1)
        >>> pw2 = f.represent_in_global_coordinates(pf)
        >>> allclose(pw1, pw2)
        True

        """
        T = matrix_from_frame(self)
        pt = Point(*point)
        pt.transform(T)
        return pt
Example #3
0
File: line.py Project: tclim/compas
 def __setitem__(self, key, value):
     if key == 0:
         self.start = Point(value)
         return
     if key == 1:
         self.end = Point(value)
         return
     raise KeyError
Example #4
0
 def from_three_points(cls, p1, p2, p3):
     p1 = Point(*p1)
     p2 = Point(*p2)
     p3 = Point(*p3)
     v1 = p2 - p1
     v2 = p3 - p1
     plane = cls()
     plane.point = p1
     plane.normal = Vector.cross(v1, v2)
     plane.normal.unitize()
     return plane
Example #5
0
 def points(self, points):
     self._points = [Point(*xyz) for xyz in points]
     self._p = len(points)
     self._lines = [
         Line(self._points[i], self._points[i + 1])
         for i in range(0, self._p - 1)
     ]
     self._l = len(self._lines)
Example #6
0
 def from_point_and_two_vectors(cls, point, v1, v2):
     v1 = Vector(*v1)
     v2 = Vector(*v2)
     n = Vector.cross(v1, v2)
     n.unitize()
     plane = cls()
     plane.point = Point(*point)
     plane.normal = n
     return plane
Example #7
0
 def points(self, points):
     if points[-1] == points[0]:
         del points[-1]
     self._points = [Point(*xyz) for xyz in points]
     self._lines = [
         Line(self.points[i], self.points[i + 1])
         for i in range(-1,
                        len(points) - 1)
     ]
Example #8
0
    def compute_point(self, t):
        """Compute a point on the curve.

        Parameters:
            t (float): The value of the curve parameter. Must be between 0 and 1.

        Returns:
            Point: the corresponding point on the curve.
        """
        n = self.degree
        point = Point(0, 0, 0)
        for i, p in enumerate(self.points):
            b = bernstein(n, i, t)
            point += p * b
        return point
Example #9
0
    def from_three_points(cls, a, b, c):
        """Construct a plane from three points in three-dimensional space.

        Parameters
        ----------
        a : point
            The first point.
        b : point
            The second point.
        c : point
            The second point.

        Returns
        -------
        Plane
            A plane with base point ``a`` and normal vector defined as the unitized
            cross product of the vectors ``ab`` and ``ac``.

        """
        a = Point(*a)
        b = Point(*b)
        c = Point(*c)
        normal = Vector.cross(b - a, c - a)
        return cls(a, normal)
Example #10
0
File: line.py Project: tclim/compas
class Line(object):
    r"""A line object is defined by two points in three-dimensional space.

    Parameters
    ----------
    p1 : tuple, list, Point
        The xyz coordinates of the first point.
    p2 : tuple, list, Point
        The xyz coordinates of the second point.

    Attributes
    ----------
    start : Point
        The start point.
    end : Point
        The end point.
    length : float, **read-only**
        The length of the line between start and end.
    midpoint : Point, **read-only**
        The midpoint between start and end.
    direction : Vector, **read-only**
        A unit vector pointing from start to end.

    Notes
    -----
    For more info on lines and linear equations, see [1]_.

    For convenience, this class implements the following *magic* methods:

    * ``__repr__``
    * ``__len__``
    * ``__getitem__``
    * ``__setitem__``
    * ``__iter__``
    * ``__mul__``
    * ``__imul__``

    References
    ----------
    .. [1] Wikipedia. *Linear equation*.
           Available at: https://en.wikipedia.org/wiki/Linear_equation.

    Examples
    --------
    >>> line = Line([0,0,0], [1,1,1])
    >>> line.midpoint
    [0.5, 0.5, 0.0]
    >>> line.length
    1.73205080757
    >>> line.direction
    [0.57735026919, 0.57735026919, 0.57735026919]

    >>> type(line.start)
    <class 'point.Point'>
    >>> type(line.midpoint)
    <class 'point.Point'>
    >>> type(line.direction)
    <class 'vector.Vector'>

    """
    def __init__(self, p1, p2):
        self.start = Point(* p1)
        self.end = Point(* p2)

    # ==========================================================================
    # factory
    # ==========================================================================

    # ==========================================================================
    # descriptors
    # ==========================================================================

    @property
    def vector(self):
        """A vector pointing from start to end.

        Returns:
            Vector: The vector.
        """
        return self.end - self.start

    @property
    def length(self):
        """The length of the vector from start to end.

        Returns:
            float: The length.
        """
        return self.vector.length

    @property
    def midpoint(self):
        """The midpoint between start and end.

        Returns:
            Point: The midpoint.
        """
        v = self.direction * (0.5 * self.length)
        return self.start + v

    @property
    def direction(self):
        """A unit vector pointing from start and end.

        Returns:
            Vector: The direction.
        """
        return self.vector * (1 / self.length)

    # ==========================================================================
    # representation
    # ==========================================================================

    def __repr__(self):
        return '({0}, {1})'.format(self.start, self.end)

    def __len__(self):
        return 2

    # ==========================================================================
    # access
    # ==========================================================================

    def __getitem__(self, key):
        if key == 0:
            return self.start
        if key == 1:
            return self.end
        raise KeyError

    def __setitem__(self, key, value):
        if key == 0:
            self.start = Point(value)
            return
        if key == 1:
            self.end = Point(value)
            return
        raise KeyError

    def __iter__(self):
        return iter([self.start, self.end])

    # ==========================================================================
    # comparison
    # ==========================================================================

    # ==========================================================================
    # operators
    # ==========================================================================

    def __mul__(self, n):
        """Create a line with the same start point and direction, but scaled
        length.

        Parameters:
            n (int, float): The scaling factor.

        Returns:
            Line: A line with the same start point and direction, but scaled length.
        """
        v = self.direction * (n * self.length)
        return Line(self.start, self.start + v)

    # ==========================================================================
    # inplace operators
    # ==========================================================================

    def __imul__(self, n):
        v = self.direction * (n * self.length)
        self.end = self.start + v
        return self

    # ==========================================================================
    # methods
    # ==========================================================================

    # ==========================================================================
    # transformations
    # ==========================================================================

    def translate(self, vector):
        """Translate the line by a vector."""
        self.start.translate(vector)
        self.end.translate(vector)

    def rotate(self, angle, origin=None):
        """Rotate the line around the origin, or around a specified origin."""
        if not origin:
            origin = [0, 0, 0]
        origin = Point(origin)

    def scale(self, n):
        """Increase the distance between start and end by a factor n, while
        keeping the start point fixed.

        Parameters:
            n (int, float): The scaling factor.

        Notes:
            This is an alias for self \*= n
        """
        self *= n
Example #11
0
 def points(self, points):
     if points:
         self._points = [Point(*point) for point in points]
Example #12
0
 def from_point_and_normal(cls, point, normal):
     plane = cls()
     plane.point = Point(*point)
     plane.normal = Vector(*normal)
     plane.normal.unitize()
     return plane
Example #13
0
File: line.py Project: tclim/compas
 def rotate(self, angle, origin=None):
     """Rotate the line around the origin, or around a specified origin."""
     if not origin:
         origin = [0, 0, 0]
     origin = Point(origin)
Example #14
0
 def end(self, point):
     self._end = Point(*point)
Example #15
0
    # ==========================================================================
    # transformations
    # ==========================================================================


# ==============================================================================
# Main
# ==============================================================================

if __name__ == '__main__':

    from compas.viewers import Viewer
    from compas.viewers import xdraw_points
    from compas.viewers import xdraw_lines

    base = Point(1.0, 0.0, 0.0)
    normal = Vector(1.0, 1.0, 1.0)

    plane = Plane.from_point_and_normal(base, normal)

    points = [{'pos': base, 'color': (1.0, 0.0, 0.0), 'size': 10.0}]

    lines = []
    for vector in plane.basis + [plane.normal]:
        lines.append({
            'start': base,
            'end': base + vector,
            'color': (0.0, 0.0, 0.0),
            'width': 3.0
        })
Example #16
0
 def start(self, point):
     self._start = Point(*point)
Example #17
0
File: line.py Project: tclim/compas
 def __init__(self, p1, p2):
     self.start = Point(* p1)
     self.end = Point(* p2)
Example #18
0
 def center(self):
     """Point: The center (of mass) of the polygon."""
     return Point(* center_of_mass_polygon(self.points))
Example #19
0
 def point(self, point):
     self._point = Point(*point)
Example #20
0
    ea2 = f.euler_angles()
    print(allclose(ea1, ea2))

    q1 = [0.945, -0.021, -0.125, 0.303]
    f = Frame.from_quaternion(q1, point=[1., 1., 1.])
    q2 = f.quaternion
    print(allclose(q1, q2, tol=1e-03))

    aav1 = [-0.043, -0.254, 0.617]
    f = Frame.from_axis_angle_vector(aav1, point=[0, 0, 0])
    aav2 = f.axis_angle_vector
    print(allclose(aav1, aav2))

    ea1 = 1.4, 0.5, 2.3
    f = Frame.from_euler_angles(ea1, static=True, axes='xyz')
    ea2 = f.euler_angles(static=True, axes='xyz')
    print(allclose(ea1, ea2))

    f1 = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
    T = Transformation.from_frame(f1)
    f2 = Frame.worldXY()
    f2.transform(T)
    print(f1 == f2)

    f = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
    pw1 = [2, 2, 2]
    pw1 = Point(*pw1)
    pf = f.represent_in_local_coordinates(pw1)
    pw2 = f.represent_in_global_coordinates(pf)
    print(allclose(pw1, pw2))
Example #21
0
 def centroid(self):
     """int: The centroid of the polygon."""
     return Point(* centroid_points(self.points))
Example #22
0
    f = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
    T = Transformation.from_frame(f)
    Tinv = T.inverse()
    I = Transformation()
    print(I == T * Tinv)

    f1 = Frame([2, 2, 2], [0.12, 0.58, 0.81], [-0.80, 0.53, -0.26])
    f2 = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
    T = Transformation.from_frame_to_frame(f1, f2)
    f1.transform(T)
    print(f1 == f2)

    f = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
    T = Transformation.from_frame(f)
    p = Point(0, 0, 0)
    p.transform(T)
    print(allclose(f.point, p))

    f1 = Frame([1, 1, 1], [0.68, 0.68, 0.27], [-0.67, 0.73, -0.15])
    T = Transformation.from_frame(f1)
    points = [[1.0, 1.0, 1.0], [1.68, 1.68, 1.27], [0.33, 1.73, 0.85]]
    points = transform_points(points, T)

    trans1 = [1, 2, 3]
    angle1 = [-2.142, 1.141, -0.142]
    scale1 = [0.123, 2, 0.5]
    T = matrix_from_translation(trans1)
    R = matrix_from_euler_angles(angle1)
    S = matrix_from_scale_factors(scale1)
    M = multiply_matrices(multiply_matrices(T, R), S)