Example #1
0
def test1():
    cc = ConeCyl()
    cc.laminaprop = (123.55e3 , 8.708e3,  0.319, 5.695e3, 5.695e3, 5.695e3)
    cc.stack = [0, 0, 19, -19, 37, -37, 45, -45, 51, -51]
    cc.plyt = 0.125
    cc.r2 = 250.
    cc.H = 510.
    cc.alphadeg = 0.

    cc.m1 = 120
    cc.m2 = 15
    cc.n2 = 15

    cc.thetaT = None
    cc.Fc = 1.
    cc.pdC = False

    cc.add_SPL(10.)

    cc.model = 'clpt_donnell_bc1'

    cc.lb()
    cc.Fc = cc.eigvals[0]
    cc.plot(cc.eigvecs[:,0])
    cc.Fc = 100.
    regions_conditions(cc, 'k0L')
Example #2
0
def test1():
    cc = ConeCyl()
    cc.laminaprop = (123.55e3, 8.708e3, 0.319, 5.695e3, 5.695e3, 5.695e3)
    cc.stack = [0, 0, 19, -19, 37, -37, 45, -45, 51, -51]
    cc.plyt = 0.125
    cc.r2 = 250.
    cc.H = 510.
    cc.alphadeg = 0.

    cc.m1 = 120
    cc.m2 = 15
    cc.n2 = 15

    cc.thetaT = None
    cc.Fc = 1.
    cc.pdC = False

    cc.add_SPL(10.)

    cc.model = 'clpt_donnell_bc1'

    cc.lb()
    cc.Fc = cc.eigvals[0]
    cc.plot(cc.eigvecs[:, 0])
    cc.Fc = 100.
    regions_conditions(cc, 'k0L')
Example #3
0
def convergence_nx_nt():
    '''It was selected a hypothetical cone with the laminate of cylinder
    Z33 and a semi-vertex angle of 35.

    The data generated from this function is used to define the dictionary
    `nx_nt_table` inside `ConeCyl.rebuild()`.

    For simplification, it is assumed `m1=m2=n2`.
    '''
    cc = ConeCyl()
    cc.laminaprop = (123.55e3 , 8.708e3,  0.319, 5.695e3, 5.695e3, 5.695e3)
    cc.stack = [0, 0, 19, -19, 37, -37, 45, -45, 51, -51]
    cc.plyt = 0.125
    cc.r2 = 250.
    cc.H = 510.
    cc.alphadeg = 35.
    cc.linear_kinematics='clpt_donnell'
    cc.NL_kinematics='donnell_numerical'
    cc.Fc = 200000
    cc.initialInc = 0.2
    cc.minInc = 1.e-3
    cc.modified_NR = False
    cc.compute_every_n = 10
    cc.pd = False
    PLs = [5, 20, 30, 45, 60, 70, 80]
    PLs = [90]
    for n in [20, 25, 30, 35]:
        cc.m1 = cc.m2 = cc.n2 = n
        for nt in [60, 80, 100, 120]:
            cc.nx = cc.nt = nt
            print cProfile.runctx('curves = cc.SPLA(PLs, NLgeom=True)',
                              globals(), locals(), 'tester.prof')
Example #4
0
def convergence_nx_nt():
    '''It was selected a hypothetical cone with the laminate of cylinder
    Z33 and a semi-vertex angle of 35.

    The data generated from this function is used to define the dictionary
    `nx_nt_table` inside `ConeCyl.rebuild()`.

    For simplification, it is assumed `m1=m2=n2`.
    '''
    cc = ConeCyl()
    cc.laminaprop = (123.55e3, 8.708e3, 0.319, 5.695e3, 5.695e3, 5.695e3)
    cc.stack = [0, 0, 19, -19, 37, -37, 45, -45, 51, -51]
    cc.plyt = 0.125
    cc.r2 = 250.
    cc.H = 510.
    cc.alphadeg = 35.
    cc.linear_kinematics = 'clpt_donnell'
    cc.NL_kinematics = 'donnell_numerical'
    cc.Fc = 200000
    cc.initialInc = 0.2
    cc.minInc = 1.e-3
    cc.modified_NR = False
    cc.compute_every_n = 10
    cc.pd = False
    PLs = [5, 20, 30, 45, 60, 70, 80]
    PLs = [90]
    for n in [20, 25, 30, 35]:
        cc.m1 = cc.m2 = cc.n2 = n
        for nt in [60, 80, 100, 120]:
            cc.nx = cc.nt = nt
            print(
                cProfile.runctx('curves = cc.SPLA(PLs, NLgeom=True)',
                                globals(), locals(), 'tester.prof'))
Example #5
0
from compmech.conecyl import ConeCyl

if __name__ == '__main__':
    cc = ConeCyl()
    cc.name = 'z33'
    cc.laminaprop = (123.55e3 , 8.708e3,  0.319, 5.695e3, 5.695e3, 5.695e3)
    cc.stack = [0, 0, 19, -19, 37, -37, 45, -45, 51, -51]
    cc.plyt = 0.125
    cc.r2 = 250.
    cc.H = 510.

    cc.alphadeg = 0

    cc.m1 = cc.m2 = cc.n2 = 40
    cc.pdC = False
    cc.Fc = 2000.

    cc.add_SPL(0.4, pt=0.25, theta=deg2rad(-30))
    cc.add_SPL(0.4, pt=0.25, theta=deg2rad(-60))
    cc.add_SPL(0.4, pt=0.25, theta=deg2rad(-90))
    cc.add_SPL(0.3, pt=0.25, theta=deg2rad(-120))
    cc.add_SPL(0.3, pt=0.5, theta=deg2rad(-120))
    cc.add_SPL(0.3, pt=0.75, theta=deg2rad(-120))
    cc.add_SPL(0.4, pt=0.75, theta=deg2rad(-90))
    cc.add_SPL(0.4, pt=0.75, theta=deg2rad(-60))
    cc.add_SPL(0.4, pt=0.75, theta=deg2rad(-30))

    cc.add_SPL(0.5, pt=0.75, theta=deg2rad(30))
    cc.add_SPL(0.4, pt=0.50, theta=deg2rad(30))
    cc.add_SPL(0.6, pt=0.25, theta=deg2rad(30))
    cc.add_SPL(0.7, pt=0.35, theta=deg2rad(50))