Example #1
0
def disp():
    flow_out_data = flowOutData()
    for i in range(4):
        real_data = pd.read_csv(get_data_path())
        data = json.load(open('data_run_no_healed{}.json'.format(int(i))))
        infectratio = InfectRatio(1, [[0., 1.]], [True])
        touchratio = TouchRatio(1, [[0.0, 0.6]], [True])
        touchratiointra = TouchRatio(1, [[0, 1]], [True])
        obs = ObservationRatio(1, [[0.0, 0.3]], [True])
        dead = DeadRatio(1, [[0., 0.01]], [True])
        isoratio = IsolationRatio(1, [[0.0, 0.5]], [True])
        dummy = DummyModel(1, [[0, 400]], [True, True])
        cure_ratio = InfectRatio(1, [[0., 0.1]], [True])
        city = 420000
        start_date = date(2020, 1, 11)
        # set the time of applying touchratio
        simulator = Simulator(city,
                              infectratio,
                              touchratio,
                              obs,
                              dead,
                              dummy,
                              isoratio,
                              touchratiointra,
                              cure_ratio, [get_important_date(city)],
                              unob_flow_num=None,
                              flow_out_data=flow_out_data,
                              training_date_end=None)
        simulator.set_param(data['x'][str(city)])
        duration = len(real_data["date"].unique()) - 1
        sim_res, _ = simulator.simulate(str(start_date), duration)
        plot1(data['real_confirmed'][str(city)], sim_res['observed'], '',
              'no_heal{}.pdf'.format(int(i)), 7)
Example #2
0
def lstm_hubei():
    infectratio = InfectRatio(1, [[0, 0.1]], [True])
    touchratio = TouchRatio(1, [[0.0, 0.3333333]], [True])  # 0.33333  0.2
    touchratiointra = TouchRatio(1, [[0., 1.]], [True])
    obs = ObservationRatio(1, [[0.0, 0.3]], [True])  # 0.2 0.3
    dead = DeadRatio(1, [[0., 0.01]], [True])
    isoratio = IsolationRatio(1, [[0.03, 0.12]], [True])  # 0.03 0.12  0.24
    dummy = DummyModel(1, [[0, 400]], [True, True])
    cure_ratio = InfectRatio(1, [[0., 0.1]], [True])
    budget = 200000
    return 'Comparision Hubei', [
        infectratio.dim_range[0],
        [round(item * 15, interval)
         for item in touchratio.dim_range[0]], obs.dim_range[0],
        dead.dim_range[0], dummy.dim_range[0], isoratio.dim_range[0],
        [round(item * 15, interval) for item in touchratiointra.dim_range[0]],
        cure_ratio.dim_range[0], budget
    ]
Example #3
0
def foreign2():
    infectratio = InfectRatio(1, [[0.015, 0.023]], [True])
    touchratio = TouchRatio(1, [[0.999999, 0.999999999]], [True])
    touchratiointra = TouchRatio(1, [[0, 1]], [True])
    obs = ObservationRatio(1, [[0.0, 0.3]], [True])
    dead = DeadRatio(1, [[0., 0.01]], [True])
    isoratio = IsolationRatio(1, [[0.02, 0.12]], [True])
    dummy = DummyModel(1, [[0, 400]], [True, True])
    cure_ratio = InfectRatio(1, [[0., 0.15]], [True])
    budget = 80000
    return 'Other country2', [
        infectratio.dim_range[0],
        [round(item * 15, interval)
         for item in touchratio.dim_range[0]], obs.dim_range[0],
        dead.dim_range[0], dummy.dim_range[0], isoratio.dim_range[0],
        [round(item * 15, interval) for item in touchratiointra.dim_range[0]],
        cure_ratio.dim_range[0], budget
    ]
Example #4
0
def china():
    infectratio = InfectRatio(1, [[0, 0.05]], [True])
    touchratio = TouchRatio(1, [[0.0, 1 / 3.]], [True])
    touchratiointra = TouchRatio(1, [[0., 1.]], [True])  # heilongjiang and
    obs = ObservationRatio(1, [[0.0, 0.3]], [True])  # 0.2 0.3
    dead = DeadRatio(1, [[0., 0.01]], [True])
    isoratio = IsolationRatio(1, [[0.03, 0.12]], [True])  # 0.03 0.12  0.24
    dummy = DummyModel(1, [[0, 0.00001]], [True, True])
    cure_ratio = InfectRatio(1, [[0., 0.1]], [True])
    budget = 80000
    return 'China (exclude Hubei)', [
        infectratio.dim_range[0],
        [round(item * 15, interval)
         for item in touchratio.dim_range[0]], obs.dim_range[0],
        dead.dim_range[0], dummy.dim_range[0], isoratio.dim_range[0],
        [round(item * 15, interval) for item in touchratiointra.dim_range[0]],
        cure_ratio.dim_range[0], budget
    ]
Example #5
0
def run_opt(city, budget, start_date, important_dates, infectratio_range=None,
            dummy_range=None, unob_flow_num=None, repeat_time=1, init_samples=None,
            training_end_date=None, json_name='data_run.json', seed=3, loss_ord=0.0,
            touch_range=None,iso_range=None):
    assert infectratio_range is not None and dummy_range is not None
    days_predict = 0
    # load data
    real_data = pd.read_csv(get_data_path(True))
    history_real = prepareData(real_data)
    flow_out_data = None
    # initialize models

    infectratio = InfectRatio(1, [infectratio_range], [True])
    if touch_range is None:
        touchratio = TouchRatio(1, [[0.999, 1.0000]], [True])
    else:
        touchratio = TouchRatio(1, [touch_range], [True])
    touchratiointra = TouchRatio(1, [[0, 1]], [True])
    obs = ObservationRatio(1, [[0.0, 0.3]], [True])
    dead = DeadRatio(1, [[0., 0.01]], [True])
    if iso_range is None:
        isoratio = IsolationRatio(1, [[0.03, 0.12]], [True])
    else:
        isoratio = IsolationRatio(1, [iso_range], [True])

    dummy = DummyModel(1, [dummy_range], [True, True])
    cure_ratio = InfectRatio(1, [[0., 0.15]], [True])

    simulator = Simulator(city, infectratio, touchratio, obs, dead, dummy, isoratio, touchratiointra, cure_ratio, important_dates,
                          unob_flow_num=unob_flow_num, flow_out_data=flow_out_data, training_date_end=training_end_date)
    test_date = datetime.strptime(history_real['date'].max(), '%Y-%m-%d').date() - timedelta(days_predict)
    history_real = history_real[history_real['adcode'] == city]
    history_real = history_real[history_real['date'] >= str(start_date)]
    history_train = history_real[history_real['date'] <= str(test_date)]

    x, y = simulator.fit(history_train, budget=budget, server_num=get_core_num(),
                         repeat=repeat_time, seed=seed, intermediate_freq=10000, init_samples=init_samples,
                         loss_ord=loss_ord)
    print('best_solution: x = ', x, 'y = ', y)
    simulator.set_param(x)
    run_simulation(x, city, 60, 60, start_date, get_important_date(city), unob_flow_num=unob_flow_num, json_name=json_name)
    return x
Example #6
0
def run_simulation2(x,
                    city,
                    simulate_day1,
                    simulate_day2,
                    start_date,
                    simulate_date,
                    history_real,
                    incubation=3,
                    unob_flow_num=None,
                    json_name='data_run.json'):
    days_predict = 0

    infectratio = InfectRatio(1, [[0, 1]], [True])
    touchratio = TouchRatio(1, [[0, 1.]], [True])
    touchratiointra = TouchRatio(1, [[0, 10]], [True])
    obs = ObservationRatio(1, [[0.0, 1.]], [True])
    dead = DeadRatio(1, [[0., 0.1]], [True])
    isoratio = IsolationRatio(1, [[0., 1]], [True])
    dummy = DummyModel(1, [[0, 2000000]], [True, True])
    cure_ratio = InfectRatio(1, [[0., 100]], [True])

    flow_out_data = None
    important_dates = [get_important_date(city)]
    json_path = json_name
    end_date = datetime.strptime(history_real['date'].max(), '%Y-%m-%d').date()
    test_date = datetime.strptime(history_real['date'].max(),
                                  '%Y-%m-%d').date() - timedelta(days_predict)
    history_real = history_real[history_real['adcode'] == city]
    history_real = history_real[history_real['date'] >= str(start_date)]
    history_train = history_real[history_real['date'] <= str(test_date)]
    duration = len(history_train["date"].unique()) - 1

    simulator = Simulator(city,
                          infectratio,
                          touchratio,
                          obs,
                          dead,
                          dummy,
                          isoratio,
                          touchratiointra,
                          cure_ratio,
                          important_dates,
                          unob_flow_num=unob_flow_num,
                          flow_out_data=flow_out_data,
                          incubation=incubation)
    if not os.path.exists('./img/{}'.format(city)):
        os.makedirs('./img/{}'.format(city))
    if not os.path.exists('./result'.format(city)):
        os.makedirs('./result'.format(city))

    with open('./result/result{}.txt'.format(city), 'w') as f:
        print('infection_ratio: [0, 1], touch_ratio_in_province: [0, 0.5]',
              file=f)
        print('touch_ratio_between_province: [0, 1]', file=f)
        print('observe_ratio_each_day: [0.05613, 1]', file=f)
        print('dead_ratio_observe: [0, 0.1], dead_ratio_unob: [0, 0.1]',
              file=f)
        print('initial_infection_hubei: [8, 8.01].', file=f)
        print('isolation_ratio: [0, 0.1]', file=f)
        print('BEST RESUTL:', file=f)
        print('x = ', x, file=f)
        simulator.set_param(x)
        print('##################################', file=f)
        print('HISTORY REAL', file=f)
        print('Data form ' + str(start_date) + ' to ' + str(end_date) +
              'are used for training',
              file=f)
        print(history_train[history_train['adcode'] == city], file=f)
        print('##################################', file=f)
        print('SIMULATED RESULTS', file=f)
        print('start_date: ', start_date, 'duration: ', duration, file=f)
        sim, records = simulator.simulate(str(start_date), duration)
        append_to_json(json_path, 'x', str(city), list(x))
        append_to_json(json_path, 'R01', str(city), get_R0(15, x[0], x[5], 14))
        append_to_json(json_path, 'R02', str(city),
                       get_R0(15 * x[1], x[0], x[5], 14))
        append_to_json(json_path, 'DT1', str(city), get_DT(15, x[0], x[5]))
        append_to_json(json_path, 'DT2', str(city),
                       get_DT(15 * x[1], x[0], x[5]))
        append_to_json(json_path, 'death_rate', str(city),
                       get_death_rate(x[3], x[7], 14, 10))

        append_to_json(json_path, 'real_confirmed', str(city),
                       list(history_train['observed']))
        append_to_json(json_path, 'real_cum_confirmed', str(city),
                       list(history_train['cum_confirmed']))
        append_to_json(json_path, 'sim_confirmed', str(city),
                       list(sim['observed']))
        append_to_json(json_path, 'sim_cum_confirmed', str(city),
                       list(sim['cum_confirmed']))
        append_to_json(json_path, 'loss', str(city),
                       get_loss(sim, history_train))
        append_to_json(json_path, 'newly_confirmed_loss', str(city),
                       get_newly_loss(sim, history_train))
        append_to_json(json_path, 'real_cum_dead', str(city),
                       list(history_train['cum_dead']))
        append_to_json(json_path, 'sim_new_infection', str(city),
                       list(sim['new_infection']))

        append_to_json(json_path, 'sim_total_infection', str(city),
                       list(sim['total_infection']))
        append_to_json(json_path, 'sim_cum_self_cured', str(city),
                       list(sim['cum_cured']))
        append_to_json(json_path, 'sim_cum_nosymbol', str(city),
                       list(sim['cum_no_symbol']))

        print(f'loss: {get_loss(sim, history_train)}', file=f)
        cum_real = history_train['cum_confirmed'].values
        simulated_data, _ = simulator.simulate(str(start_date), duration)
        cum_simulated = simulated_data['cum_confirmed'].values
        print(simulated_data[simulated_data['adcode'] == city], file=f)

        s1, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day1 + 30)
        touch_ratio_high = 0.35 * x[1]
        touch_ratio_very_high = 0.6 * x[1]
        touch_ratio_low = 0.1 * x[1]
        s2, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day2 + 30,
                                   simulate_date=simulate_date,
                                   simulate_touchratio=touch_ratio_high)
        s3, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day2 + 30,
                                   simulate_date=simulate_date,
                                   simulate_touchratio=touch_ratio_low)
        s8, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day2 + 30,
                                   simulate_date=simulate_date,
                                   simulate_touchratio=touch_ratio_very_high)

        print(len(s1['cum_confirmed']), len(s3['cum_confirmed']),
              str(start_date + timedelta(len(s3['cum_confirmed']))))
        s4, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day2 + 30,
                                   simulate_date=get_important_date(city) +
                                   timedelta(15),
                                   simulate_touchratio=touch_ratio_low)
        s5, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day2 + 30,
                                   simulate_date=get_important_date(city) +
                                   timedelta(15),
                                   simulate_touchratio=touch_ratio_high)
        s6, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day2 + 30,
                                   simulate_date=get_important_date(city) +
                                   timedelta(5),
                                   simulate_touchratio=touch_ratio_low)
        s7, _ = simulator.simulate(str(start_date),
                                   duration + simulate_day2 + 30,
                                   simulate_date=get_important_date(city) +
                                   timedelta(5),
                                   simulate_touchratio=touch_ratio_high)
        c_con = list(
            s1['cum_confirmed'])[len(list(history_train['observed'])) - 1]
        c_inf = list(
            s1['cum_infection'])[len(list(history_train['observed'])) - 1]
        append_to_json(json_path, 'current_asym', str(city), c_con / c_inf)
        c_con = list(s1['cum_confirmed'])[-1]
        c_inf = list(s1['cum_infection'])[-1]
        append_to_json(json_path, 'final_asym', str(city), c_con / c_inf)
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s1', str(city),
                       list(s1['cum_confirmed']))
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s2', str(city),
                       list(s2['cum_confirmed']))
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s3', str(city),
                       list(s3['cum_confirmed']))
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s4', str(city),
                       list(s4['cum_confirmed']))
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s5', str(city),
                       list(s5['cum_confirmed']))
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s6', str(city),
                       list(s6['cum_confirmed']))
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s7', str(city),
                       list(s7['cum_confirmed']))
        append_to_json(json_path, 'sim_cum_confirmed_deduction_s8', str(city),
                       list(s7['cum_confirmed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s1', str(city),
                       list(s1['observed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s2', str(city),
                       list(s2['observed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s3', str(city),
                       list(s3['observed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s4', str(city),
                       list(s4['observed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s5', str(city),
                       list(s5['observed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s6', str(city),
                       list(s6['observed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s7', str(city),
                       list(s7['observed']))
        append_to_json(json_path, 'sim_confirmed_deduction_s8', str(city),
                       list(s7['observed']))
        append_to_json(json_path, 'sim_infection_deduction_s1', str(city),
                       list(s1['total_infection']))
        append_to_json(json_path, 'sim_infection_deduction_s2', str(city),
                       list(s2['total_infection']))
        append_to_json(json_path, 'sim_infection_deduction_s3', str(city),
                       list(s3['total_infection']))
        append_to_json(json_path, 'sim_infection_deduction_s4', str(city),
                       list(s4['total_infection']))
        append_to_json(json_path, 'sim_infection_deduction_s5', str(city),
                       list(s5['total_infection']))
        append_to_json(json_path, 'sim_infection_deduction_s6', str(city),
                       list(s6['total_infection']))
        append_to_json(json_path, 'sim_infection_deduction_s7', str(city),
                       list(s7['total_infection']))
        append_to_json(json_path, 'sim_infection_deduction_s8', str(city),
                       list(s7['total_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s1', str(city),
                       list(s1['cum_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s2', str(city),
                       list(s2['cum_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s3', str(city),
                       list(s3['cum_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s4', str(city),
                       list(s4['cum_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s5', str(city),
                       list(s5['cum_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s6', str(city),
                       list(s6['cum_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s7', str(city),
                       list(s7['cum_infection']))
        append_to_json(json_path, 'sim_cum_infection_deduction_s8', str(city),
                       list(s7['cum_infection']))
        append_to_json(json_path, 'touch_ratio_low', str(city),
                       touch_ratio_low)
        append_to_json(json_path, 'touch_ratio_hight', str(city),
                       touch_ratio_high)
        append_to_json(json_path, 'sim_cum_dead_s1', str(city),
                       list(s1['cum_dead']))
        append_to_json(json_path, 'sim_cum_dead_s2', str(city),
                       list(s2['cum_dead']))
        append_to_json(json_path, 'sim_cum_dead_s3', str(city),
                       list(s3['cum_dead']))
        append_to_json(json_path, 'sim_cum_dead_s4', str(city),
                       list(s4['cum_dead']))
        append_to_json(json_path, 'sim_cum_dead_s5', str(city),
                       list(s5['cum_dead']))
        append_to_json(json_path, 'sim_cum_dead_s6', str(city),
                       list(s6['cum_dead']))
        append_to_json(json_path, 'sim_cum_dead_s7', str(city),
                       list(s7['cum_dead']))
        append_to_json(json_path, 'sim_cum_dead_s8', str(city),
                       list(s7['cum_dead']))

        append_to_json(json_path, 'sim_total_infection_deduction_s1',
                       str(city), list(s1['total_unobserved']))
        append_to_json(json_path, 'sim_total_infection_deduction_s2',
                       str(city), list(s2['total_unobserved']))
        append_to_json(json_path, 'sim_total_infection_deduction_s3',
                       str(city), list(s3['total_unobserved']))
        append_to_json(json_path, 'sim_total_infection_deduction_s4',
                       str(city), list(s4['total_unobserved']))
        append_to_json(json_path, 'sim_total_infection_deduction_s5',
                       str(city), list(s5['total_unobserved']))
        append_to_json(json_path, 'sim_total_infection_deduction_s6',
                       str(city), list(s6['total_unobserved']))
        append_to_json(json_path, 'sim_total_infection_deduction_s7',
                       str(city), list(s7['total_unobserved']))
        append_to_json(json_path, 'sim_total_infection_deduction_s8',
                       str(city), list(s8['total_unobserved']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s1', str(city),
                       list(s1['cum_self_cured']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s2', str(city),
                       list(s2['cum_self_cured']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s3', str(city),
                       list(s3['cum_self_cured']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s4', str(city),
                       list(s4['cum_self_cured']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s5', str(city),
                       list(s5['cum_self_cured']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s6', str(city),
                       list(s6['cum_self_cured']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s7', str(city),
                       list(s7['cum_self_cured']))
        append_to_json(json_path, 'sim_cum_self_cured_deduction_s8', str(city),
                       list(s8['cum_self_cured']))

        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s1', str(city),
                       list(s1['cum_no_symbol']))
        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s2', str(city),
                       list(s2['cum_no_symbol']))
        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s3', str(city),
                       list(s3['cum_no_symbol']))
        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s4', str(city),
                       list(s4['cum_no_symbol']))
        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s5', str(city),
                       list(s5['cum_no_symbol']))
        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s6', str(city),
                       list(s6['cum_no_symbol']))
        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s7', str(city),
                       list(s7['cum_no_symbol']))
        append_to_json(json_path, 'sim_cum_nosymbol_deduction_s8', str(city),
                       list(s8['cum_no_symbol']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s1',
                       str(city), list(s1['total_isolation']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s2',
                       str(city), list(s2['total_isolation']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s3',
                       str(city), list(s3['total_isolation']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s4',
                       str(city), list(s4['total_isolation']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s5',
                       str(city), list(s5['total_isolation']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s6',
                       str(city), list(s6['total_isolation']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s7',
                       str(city), list(s7['total_isolation']))
        append_to_json(json_path, 'sim_total_isolation_deduction_s8',
                       str(city), list(s8['total_isolation']))
Example #7
0
def run_opt(city,
            budget,
            start_date,
            important_dates,
            infectratio_range=None,
            dummy_range=None,
            unob_flow_num=None,
            repeat_time=1,
            init_samples=None,
            training_date_end=None,
            json_name='data_run.json',
            seed=1,
            loss_ord=0.0,
            unob_period=None,
            obs_period=None,
            iso_period=None,
            cure_period=None,
            isoratio_it=None):

    if city == 420000:
        infectratio_range = [0., 0.05]
        dummy_range = [0.0000, 400.00001]
    else:
        assert infectratio_range is not None and dummy_range is not None
    days_predict = 0
    # load data
    real_data = pd.read_csv(get_data_path())

    history_real = prepareData(real_data)
    flow_out_data = flowOutData()
    # initialize models

    infectratio = InfectRatio(1, [infectratio_range], [True])
    touchratio = TouchRatio(1, [[0.0, 0.6]], [True])
    touchratiointra = TouchRatio(1, [[0, 1]], [True])
    obs = ObservationRatio(1, [[0.0, 0.3]], [True])
    dead = DeadRatio(1, [[0., 0.01]], [True])
    if isoratio_it is None:
        isoratio = IsolationRatio(1, [[0.2, 0.5]], [True])
    else:
        isoratio = IsolationRatio(1, [isoratio_it], [True])

    dummy = DummyModel(1, [dummy_range], [True, True])
    cure_ratio = InfectRatio(1, [[0., 0.1]], [True])

    # set the time of applying touchratio
    simulator = Simulator(city,
                          infectratio,
                          touchratio,
                          obs,
                          dead,
                          dummy,
                          isoratio,
                          touchratiointra,
                          cure_ratio,
                          important_dates,
                          unob_flow_num=unob_flow_num,
                          flow_out_data=flow_out_data,
                          training_date_end=training_date_end)
    # set period here
    simulator.set_period()
    test_date = datetime.strptime(history_real['date'].max(),
                                  '%Y-%m-%d').date() - timedelta(days_predict)
    history_real = history_real[history_real['adcode'] == city]
    history_real = history_real[history_real['date'] >= str(start_date)]
    history_train = history_real[history_real['date'] <= str(test_date)]

    x, y = simulator.fit(history_train,
                         budget=budget,
                         server_num=get_core_num(),
                         repeat=repeat_time,
                         seed=seed,
                         intermediate_freq=10000,
                         init_samples=init_samples,
                         loss_ord=loss_ord)

    print('best_solution: x = ', x, 'y = ', y)
    simulator.set_param(x)
    run_simulation(x,
                   city,
                   60,
                   60,
                   start_date,
                   get_important_date(city),
                   unob_flow_num=unob_flow_num,
                   json_name=json_name)
    duration = len(real_data["date"].unique()) - 1
    sim_res, _ = simulator.simulate(str(start_date), duration)
    print('RMSE: ', get_newly_loss(sim_res, history_real))
    return x, sim_res
Example #8
0
def initHubei(x, start_date, important_date, travel_from_hubei):
    if travel_from_hubei is None:
        return None
    days_predict = 0
    # load data
    real_data = pd.read_csv(get_data_path())
    history_real = prepareData(real_data)

    infectratio = InfectRatio(1, [[0, 1]], [True])
    touchratio = TouchRatio(1, [[0., 0.3]], [True])
    touchratiointra = TouchRatio(1, [[0, 10]], [True])
    obs = ObservationRatio(1, [[0.0, 1.]], [True])
    dead = DeadRatio(1, [[0., 0.1]], [True])
    isoratio = IsolationRatio(1, [[0., 1]], [True])
    cure_ratio = InfectRatio(1, [[0., 100]], [True])
    dummy = DummyModel(1, [[0, 200000]], [True, True])

    flow_out_data = flowOutData()

    test_date = datetime.strptime(history_real['date'].max(),
                                  '%Y-%m-%d').date() - timedelta(days_predict)
    history_real = history_real[history_real['adcode'] == 420000]
    history_real = history_real[history_real['date'] >= str(start_date)]
    history_train = history_real[history_real['date'] <= str(test_date)]
    duration = len(history_train["date"].unique())
    city = 420000

    simulator = Simulator(city,
                          infectratio,
                          touchratio,
                          obs,
                          dead,
                          dummy,
                          isoratio,
                          touchratiointra,
                          cure_ratio,
                          important_date,
                          flow_out_data=flow_out_data)
    simulator.set_param(x)
    total_population = get_populations()[420000]
    simulated_result, detailed_result = simulator.simulate(
        str(start_date), duration + 60)
    init_unob = [item for item in reversed(detailed_result.unob_total_init)]
    unob_ratio = {}
    for i, item in enumerate(init_unob):
        date_now = start_date - timedelta(i + 1)
        unob_ratio[date_now] = item / total_population
    for it_date, unob_num in zip(simulated_result['date'],
                                 simulated_result['total_unobserved']):
        unob_ratio[datetime.strptime(
            it_date, '%Y-%m-%d').date()] = unob_num / total_population
    unob_flow_num = {}
    lst_travel = {}
    lst_date = None
    for it_date in travel_from_hubei:
        if it_date not in unob_ratio:
            continue
        if it_date not in unob_flow_num:
            unob_flow_num[it_date] = {}
        for it_code in travel_from_hubei[it_date]:
            unob_flow_num[it_date][it_code] = travel_from_hubei[it_date][
                it_code] * unob_ratio[it_date]
        lst_travel = travel_from_hubei[it_date]
        lst_date = it_date
    lst_date = lst_date + timedelta(1)
    while True:
        if lst_date in unob_ratio:
            if lst_date not in unob_flow_num:
                unob_flow_num[lst_date] = {}
            for it_code in lst_travel:
                unob_flow_num[lst_date][
                    it_code] = lst_travel[it_code] * unob_ratio[lst_date]
        else:
            break
        lst_date = lst_date + timedelta(1)
    return unob_flow_num