def main(): fitter = fit.downscale.FitterMultiSeries() data = dataset.Wales5Training() seed = random.SeedSequence(336116686577838597869553922167649360230) Pool = multiprocess.Pool wrapper.downscale_fit(fitter, data, seed, Pool)
def main(): fitter = fit.downscale.FitterDownscale() data = dataset.Wales5Training() seed = random.SeedSequence(135973542338678598285681473918294488781) Pool = multiprocess.Pool wrapper.downscale_fit(fitter, data, seed, Pool)
def main(): fitter = fit.downscale.FitterDownscaleDeepGp() data = dataset.IsleOfManTraining() seed = random.SeedSequence(335181766240425557327571375931666354614) Pool = multiprocess.Pool wrapper.downscale_fit(fitter, data, seed, Pool)
def main(): fitter = fit.downscale.FitterDownscale() data = dataset.IsleOfManTraining() seed = random.SeedSequence(41597761383904719560264433323691455830) Pool = multiprocess.Pool wrapper.downscale_fit(fitter, data, seed, Pool)
def main(): fitter = fit.downscale.FitterMultiSeries() data = dataset.IsleOfManTraining() seed = random.SeedSequence(275033816910622348579815457010957489899) Pool = multiprocess.Pool wrapper.downscale_fit(fitter, data, seed, Pool)