Example #1
0
def var_sepe(data_):
    ds = data_.shape
    data, miss_data1, W1, ori_W1 = handle_data(data_)
    lou, K, conv_thre, fb = 3e-3, 100, 1e-5, 0.85
    est_ori = halrtc_cpt(miss_data1, lou, conv_thre, K, W1, fb)
    var_list = []
    mean_list, svd_list = [], []
    for r in range(ds[0]):
        var_list.append(np.var(data[r]))
        mean_list.append(np.mean(data[r]))
    var_dict = {var_list[i]: i for i in range(ds[0])}
    var_assign = [[], [], []]
    for var in var_dict:
        if var < 50:
            var_assign[0].append(var_dict[var])
        elif var < 150:
            var_assign[1].append(var_dict[var])
        else:
            var_assign[2].append(var_dict[var])
    est_var = np.zeros_like(data)
    for va in var_assign:
        est_va = halrtc_cpt(miss_data1[va], lou, conv_thre, K, W1[va], fb)
        est_var[va] = est_va
    eva_var = rmse_mape_rse(est_var, data, (W1 | (ori_W1 == False)))
    print('sepe', eva_var)
    est_ori = halrtc_cpt(miss_data1, lou, conv_thre, K, W1, fb)
    eva_ori = rmse_mape_rse(est_ori, data, (W1 | (ori_W1 == False)))
    print('ori', eva_ori)
    return
Example #2
0
def week_sepe(handle_train, handle_test):
    data, miss_data1, W1, ori_W1 = handle_train
    halrtc_para = [lou, K, conv_thre, fb] = [3e-3, 100, 1e-5]
    data_test, miss_data_test, Wtest, ori_Wtest = handle_test
    ds_test = data_test.shape
    est_ori = halrtc_cpt(miss_data_test, lou, conv_thre, K, Wtest, fb)
    weekday2, weekend2 = [], []
    for i in range(ds_test[1]):
        if i % 7 < 5:
            weekday2.append(i)
        else:
            weekend2.append(i)
    est1 = halrtc_cpt(miss_data_test[:, weekday2, :], lou, conv_thre, K,
                      Wtest[:, weekday2, :], fb)
    eva1 = rmse_mape_rse(est1, data_test[:, weekday2, :],
                         (Wtest | (ori_Wtest == False))[:, weekday2, :])
    est2 = halrtc_cpt(miss_data_test[:, weekend2, :], lou, conv_thre, K,
                      Wtest[:, weekend2, :], fb)
    eva2 = rmse_mape_rse(est2, data_test[:, weekend2, :],
                         (Wtest | (ori_Wtest == False))[:, weekend2, :])
    print('weekday', eva1)
    print(
        'ori_weekday',
        rmse_mape_rse(est_ori[:, weekday2, :], data_test[:, weekday2, :],
                      (Wtest | (ori_Wtest == False))[:, weekday2, :]))
    print('weekend', eva2)
    print(
        'ori_weekend',
        rmse_mape_rse(est_ori[:, weekend2, :], data_test[:, weekend2, :],
                      (Wtest | (ori_Wtest == False))[:, weekend2, :]))
    return
Example #3
0
def test_simM(data_, r, dis_matrix, k):
    r_dis = dis_matrix[r]
    dis_dict = {r_dis[i]: i for i in range(len(r_dis))}
    sim_road = [dis_dict[j] for j in sorted(dis_dict.keys())[:k + 1]]
    data, miss_data1, W1, ori_W1 = handle_data(data_)
    lou, K, conv_thre, fb = 3e-3, 100, 1e-5, 0.85
    est_ori = halrtc_cpt(miss_data1, lou, conv_thre, K, W1, fb)
    eva_ori = rmse_mape_rse(est_ori[r], data[r], (W1 | (ori_W1 == False))[r])
    est_sim = halrtc_cpt(miss_data1[sim_road], lou, conv_thre, K, W1[sim_road],
                         fb)
    eva_sim = rmse_mape_rse(est_sim[0], data[r], (W1 | (ori_W1 == False))[r])
    print(eva_ori)
    print(eva_sim)
    return
Example #4
0
def test_labels(cn, labels, handle_info):
    halrtc_para = [lou, K, conv_thre, fb] = [3e-3, 100, 1e-5]
    data_test, miss_data_test, Wtest, ori_Wtest = handle_info
    ds_test = data_test.shape
    est_ori = halrtc_cpt(miss_data_test, lou, conv_thre, K, Wtest, fb)
    for i in range(cn):
        print('label-' + str(i), (labels == i).sum())
        temp_data = halrtc_cpt(miss_data_test[labels == i], lou, conv_thre, K,
                               Wtest[labels == i], fb)
        #est_c = cluster_ha(labels, miss_data_test, Wtest, cn, halrtc_para, axis=0)
        eva_c = rmse_mape_rse(temp_data, data_test[labels == i],
                              (Wtest | (ori_Wtest == False))[labels == i])
        print('clu', eva_c)
        eva_test = rmse_mape_rse(est_ori[labels == i], data_test[labels == i],
                                 (Wtest | (ori_Wtest == False))[labels == i])
        print('ori', eva_test)
    return
Example #5
0
def compare_3d_4d(handle_train, handle_test):
    data, miss_data1, W1, ori_W1 = handle_train
    halrtc_para = [lou, K, conv_thre, fb] = [1e-3, 100, 1e-5]
    data_test, miss_data_test, Wtest, ori_Wtest = handle_test
    rW = Wtest | (ori_Wtest == False)
    data_size = data_test.shape
    weeks = data_size[1] // 7
    '''
    Nori_data = np.zeros((data_size[0], weeks, 7, data_size[2]))
    Nmiss_data = np.zeros_like(Nori_data)
    N_W = np.zeros_like(Nmiss_data)
    Nori_W = np.zeros_like(Nori_data)
    Nr_W = np.zeros_like(Nori_W)
    for i in range(data_size[1]):
        if i >= weeks * 7:
            break
        Nori_data[:, i // 7, i % 7, :] = data_test[:, i, :]
        Nori_W[:, i // 7, i % 7, :] = ori_Wtest[:, i, :]
        Nmiss_data[:, i // 7, i % 7, :] = miss_data_test[:, i, :]
        N_W[:, i // 7, i % 7, :] = Wtest[:, i, :]
        Nr_W[:, i // 7, i % 7, :] = rW[:, i, :]
    print(Nmiss_data.shape)
    time0 = time.time()
    est_4d = np.zeros_like(Nmiss_data)
    est_4d[L==0] = halrtc_cpt(Nmiss_data[L==0], 1e-3, 1e-4, 100, N_W[L==0], 0)
    est_4d[L == 1] = halrtc_cpt(Nmiss_data[L == 1], 1e-3, 1e-4, 100, N_W[L==1], 0)
    time1 = time.time()
    print('4d_halrtc:', rmse_mape_rse(est_4d, Nori_data, Nr_W))
    print('4d_time', str(time1 - time0) + 's')
    '''
    print('loss', (miss_data_test < 1).sum())
    time0 = time.time()
    est_ori = halrtc_cpt(miss_data_test, lou, conv_thre, K, Wtest, fb)
    time1 = time.time()
    eva_ori = rmse_mape_rse(est_ori, data_test, rW)
    print('ori:', eva_ori)
    time_ori = time1 - time0
    print('ori_time:', str(time_ori) + 's')
    return
    L = np.zeros(data_size[0])
    var_mat, mean_mat = traffic_info(handle_train)
    for i in range(data_size[0]):
        #按方差均值划分
        t = np.var(data[i])
        if t < 50:
            s = round(t**0.5 / np.mean(data[i]), 2)
            L[i] = 1
    #L = var_cluster(handle_train)

    time0 = time.time()
    est_3d = cluster_ha(L, miss_data_test, Wtest, 2, halrtc_para)
    time1 = time.time()
    eva_3d = rmse_mape_rse(est_3d, data_test, rW)
    print('3d:', eva_3d)
    time_3d = time1 - time0
    print('3d_time:', str(time_3d) + 's')

    return eva_ori, time_ori, eva_3d, time_3d
Example #6
0
def test_week_cluster(handle_train, handle_test, choise='var'):
    #按一周七天分别聚类
    data, miss_data1, W1, ori_W1 = handle_train
    ds = data.shape
    train = {}
    halrtc_para = [lou, K, conv_thre, fb] = [3e-3, 100, 1e-5]
    data_test, miss_data_test, Wtest, ori_Wtest = handle_test
    est_ori = halrtc_cpt(miss_data_test, lou, conv_thre, K, Wtest, fb)
    ds_test = data_test.shape
    test, est_clu = {}, {}
    est_week = np.zeros_like(data_test)
    K_n, max_d = 2, 100
    for i in range(7):
        train[i], test[i] = [], []
        days_train = []
        for k in range(ds[1]):
            if k % 7 == i:
                days_train.append(k)
        for s in handle_train:
            train[i].append(s[:, days_train, :])

        days_test = []
        for k in range(ds_test[1]):
            if k % 7 == i:
                days_test.append(k)
        for t in handle_test:
            test[i].append(t[:, days_test, :])
        L = np.zeros(ds[0])
        for j in range(ds[0]):
            if np.var(data[j, i]) > 50:
                L[j] = 1
        #L = SC_1(train[i][0], 6, K_n, method='pearson')
        est_clu[i] = cluster_ha(L, test[i][1], test[i][2], K_n, halrtc_para)
        #est_clu[i] = test_cluster(train[i], test[i])[-1]
        for p in range(est_clu[i].shape[1]):
            est_week[:, p * 7 + i, :] = est_clu[i][:, p, :]
        eva_week = rmse_mape_rse(est_clu[i], data_test[:, days_test, :],
                                 (Wtest | (ori_Wtest == False))[:,
                                                                days_test, :])
        print('clu', i, eva_week)
        eva_i = rmse_mape_rse(est_ori[:, days_test, :],
                              data_test[:, days_test, :],
                              (Wtest | (ori_Wtest == False))[:, days_test, :])
        print('ori', i, eva_i)
    return
Example #7
0
def clusters_train(handle_train, handle_test):
    K_n = 2
    halrtc_para = [lou, K, conv_thre, fb] = [1e-3, 100, 1e-5]
    data, miss_data1, W1, ori_W1 = handle_train
    data_test, miss_data_test, Wtest, ori_Wtest = handle_test
    est_ori = halrtc_cpt(miss_data_test, lou, conv_thre, K, Wtest, fb)
    time0 = time.time()
    var_mat, mean_mat = traffic_info(handle_test)
    clf = KMeans(n_clusters=K_n)
    S = clf.fit(var_mat)
    L = S.labels_
    print(L)
    '''
    L = np.zeros(209)
    var_list = []
    std_list = []
    var_mean = np.zeros((209,2))
    for i in range(209):
        #按方差均值划分
        #if np.mean(var_mat[i]) > 50:
        #t = np.std(data[i])/np.mean(data[i])
        t = np.mean(var_mat[i])
        var_list.append(t)
        var_mean[0] = np.var(data[i])
        var_mean[1] = np.mean(data[i])
        if t < 50:
            s = round(t**0.5/np.mean(data[i]),2)
            L[i] = 1
    return L
    '''
    #est_Kmeans[L==1] = est_ori[L==1]
    est_Kmeans = cluster_ha(L, miss_data_test, Wtest, K_n, halrtc_para)
    time1 = time.time()
    for i in range(K_n):
        print(
            'ori_' + str(i),
            rmse_mape_rse(est_ori[L == i], data_test[L == i],
                          (Wtest | (ori_Wtest == False))[L == i]))
        print(
            'KM_' + str(i),
            rmse_mape_rse(est_Kmeans[L == i], data_test[L == i],
                          (Wtest | (ori_Wtest == False))[L == i]))

    print('Kmeans:',
          rmse_mape_rse(est_Kmeans, data_test, Wtest | (ori_Wtest == False)))
    print('Kmeans_time:', str(time1 - time0) + 's')

    time0 = time.time()
    est_ori = halrtc_cpt(miss_data_test, lou, conv_thre, K, Wtest, fb)
    time1 = time.time()
    eva_ori = rmse_mape_rse(est_ori, data_test, (Wtest | (ori_Wtest == False)))
    print('ori:', eva_ori)
    print('ori_time:', str(time1 - time0) + 's')
    '''
    time0 = time.time()
    L = SC_1(data,10,K_n,method='pearson')
    est_SC = cluster_ha(L,miss_data_test,Wtest,K_n,halrtc_para)
    time1 = time.time()
    print('SC:',rmse_mape_rse(est_SC,data_test,Wtest|(ori_Wtest==False)))
    print('SC_time:',str(time1-time0)+'s')
    time0 = time.time()
    L = road_Kmeans(data,ori_W1,K_n,W1,method='pearson')[0]
    est_Kmeans = cluster_ha(L, miss_data_test, Wtest, K_n,halrtc_para)
    time1 = time.time()
    print('Kmeans:', rmse_mape_rse(est_Kmeans, data_test, Wtest | (ori_Wtest == False)))
    print('Kmeans_time:',str(time1-time0)+'s')
    '''
    return
Example #8
0
def test_cluster(handle_train, handle_test, choise='var'):
    p_tr = 0.9
    halrtc_para = [lou, K, conv_thre, fb] = [1.3e-3, 100, 1e-5]
    data_test, miss_data_test, Wtest, ori_Wtest = handle_test
    rW = Wtest | (ori_Wtest == False)
    time_a = time.time()
    #lou = 1/(3*T_SVD(miss_data_test,p_tr)[0])
    est_ori = halrtc_cpt(miss_data_test, lou, conv_thre, K, Wtest, fb)
    eva_ori = rmse_mape_rse(est_ori, data_test, (Wtest | (ori_Wtest == False)))
    K_n = 2
    max_d = 100
    time_s = time.time()
    ori_time = time_s - time_a
    print('ori', eva_ori)
    print('ori_time', str(ori_time) + 's')
    ts = data_test.shape
    L = np.zeros(ts[0])
    Road = np.array(range(ts[0]))
    max_c = 0
    est_clu = np.zeros_like(data_test)
    #handle_train = handle_test #change
    var_mat, mean_mat = traffic_info(handle_train)
    iter = 0
    while True:
        HD_test = []
        for temp in handle_test:
            HD_test.append(temp[L == max_c])
        var_mat = var_mat[L == max_c]
        mean_mat = mean_mat[L == max_c]
        L, c = AHC(handle_train, choise, var_mat, mean_mat, K_n, max_d)
        if c < 0.65 or iter > 3:
            break
        #test_labels(K_n,L,HD_test)
        HD_train = []
        max_c, max_n = -1, 0
        for i in range(K_n):
            if (L == i).sum() > max_n:
                max_c = i
                max_n = (L == i).sum()
        for i in range(K_n):
            if i != max_c:
                list_i = Road[L == i]
                lou = 1 / (3 * T_SVD(miss_data_test[list_i], p_tr)[0])
                est_clu[list_i] = halrtc_cpt(miss_data_test[list_i], lou,
                                             conv_thre, K, Wtest[list_i], fb)
                print(
                    'clu',
                    rmse_mape_rse(est_clu[list_i], data_test[list_i],
                                  rW[list_i]))
                print(
                    'ori',
                    rmse_mape_rse(est_ori[list_i], data_test[list_i],
                                  rW[list_i]))

        for temp in handle_train:
            HD_train.append(temp[L == max_c])
        handle_train = HD_train.copy()
        handle_test = HD_test.copy()
        Road = Road[L == max_c]
        iter += 1

        #print(Road)
        #if Road.size < 80:
        #    break
    #最后一部分聚类与否

    clf = KMeans(n_clusters=K_n)
    data, miss_data1, W1, ori_W1 = HD_train
    ds1 = data.shape
    mean_mat = np.zeros(ds1[:2])
    for r in range(ds1[0]):
        for d in range(ds1[1]):
            mean_mat[r, d] = np.mean(data[r, d, :])
            #mean_mat[r, d] = np.std(data[r,d,:])/np.mean(data[r,d,:])
    s = clf.fit(mean_mat)
    L = np.array(s.labels_)
    for i in range(K_n):
        list_i = Road[L == i]
        #lou = 1 / (3 * T_SVD(miss_data_test[list_i], p_tr)[0])
        est_clu[list_i] = halrtc_cpt(miss_data_test[list_i], lou, conv_thre, K,
                                     Wtest[list_i], fb)

    #lou = 1 / (3 * T_SVD(miss_data_test[Road], p_tr)[0])
    #est_clu[Road] = halrtc_cpt(miss_data_test[Road], lou, conv_thre, K, Wtest[Road], fb)

    eva_clu = rmse_mape_rse(est_clu, data_test, (Wtest | (ori_Wtest == False)))
    time_e = time.time()
    ori_time = time_s - time_a
    print('ori', eva_ori)
    print('ori_time', str(ori_time) + 's')
    print('clu', eva_clu)
    clu_time = time_e - time_s
    print('clu_time', str(clu_time) + 's')
    return eva_ori, ori_time, eva_clu, clu_time, est_clu