Example #1
0
 def get_signals(self):
     bounds = [[], []]
     resources = set()
     log_signals = self.rawlog.get_signals()
     timerefs = set()
     for _, signal_name in self.inputs.items():
         check_is_in('signal', signal_name, log_signals)
         s = log_signals[signal_name]
         b = s.get_time_bounds()
         bounds[0].append(b[0])
         bounds[1].append(b[1])
         timerefs.add(s.get_time_reference())
         resources.update(s.get_resources())
     
     bounds = min(bounds[0]), max(bounds[1])
     resources = list(resources)
     
     timeref = '-'.join(sorted(timerefs))
     signals = {}
     for _, signal_name in self.outputs.items():
         warnings.warn('to finish')
         signal_type = '???'  # XXX
         s = ProcgraphFilterSignal(signal_type, timeref, resources, bounds)
         signals[signal_name] = s
     return signals
Example #2
0
def read_log(rawlog, signals=None, start=None, stop=None):
    log_signals = rawlog.get_signals()
   
    if not signals:
        signals = list(log_signals.keys())
    else:
        for x in signals:
            check_is_in('signal', x, log_signals)

    # sync to first signal
    
    signal = log_signals[signals[0]]
    bounds = signal.get_time_bounds()
    
    if start is not None:
        start = bounds[0] + start
    else:
        start = bounds[0]
        
    if stop is not None:
        stop = bounds[0] + stop
    else:
        stop = bounds[1]
    
    print('start: %s' % start)
    print('stop:  %s' % stop) 
    
    for timestamp, (name, value) in rawlog.read(signals, start, stop):  # @UnusedVariable
        
        if not (start <= timestamp <= stop + 0.001):
            msg = 'Messages not filtered (%.5f <= %.5f <= %.5f)' % (start, timestamp, stop)
            msg += '\nname: %s' % name
            raise Exception(msg)
         
        print('reading %.5f (%6.4f) %s' % (timestamp, timestamp - start, name))
    def __init__(self, match_method):
        """ 
            :param max_displ: Maximum pointwise displacement for the diffeomorphism d_max
            :param match_method: Either "continuous" or "binary" (to compute the 
                error function).
        """
        self.shape = None
        self.last_y0 = None
        self.last_y1 = None

        accepted = [MATCH_CONTINUOUS, MATCH_BINARY]
        check_is_in('match method', match_method, accepted)
        self.match_method = match_method

        self.num_samples = 0
    def __init__(self, match_method):
        """ 
            :param max_displ: Maximum pointwise displacement for the diffeomorphism d_max
            :param match_method: Either "continuous" or "binary" (to compute the 
                error function).
        """
        self.shape = None
        self.last_y0 = None
        self.last_y1 = None

        accepted = [MATCH_CONTINUOUS, MATCH_BINARY]
        check_is_in('match method', match_method, accepted)
        self.match_method = match_method

        self.num_samples = 0
Example #5
0
    def get_resource_job(self, context, rtype: str, **params):
        # print('RM %s %s get_resource %s %s' % (id(self), self._context, rtype, params))
        key = dict(rtype=rtype, **params)
        already_done = key in self.allresources
        if already_done:
            return self.allresources[key]

        check_is_in('resource type', rtype, self.providers)

        prefix = self._make_prefix(rtype, **params)
        #         print('adding job prefix %r' % prefix)
        c = context.child(name=rtype, add_job_prefix=prefix, add_outdir=rtype)
        c._job_prefix = prefix
        # Add this point we should check if we already created the job
        ok = []
        errors = []
        for provider in self.providers[rtype]:
            try:
                res_i = provider(c, **params)
                ok.append((provider, res_i))
            except ResourceManager.CannotProvide as e:
                errors.append(e)
            except Exception as e:
                msg = 'Error while trying to get resource.\n'
                msg += ' type: %r params: %s\n' % (rtype, params)
                msg += 'While calling provider %r:\n' % provider
                msg += indent(traceback.format_exc(), '> ')
                raise Exception(msg)

        if not ok:
            msg = 'No provider could create this resource:\n'
            msg += "\n".join('- %s' % str(e) for e in errors)
            raise Exception(msg)

        if len(ok) >= 2:
            msg = 'The same resource could be created by two providers.'
            msg += '\n%s %s' % (rtype, params)
            for prov, _ in ok:
                msg += '\n - %s' % prov
            raise Exception(msg)

        assert len(ok) == 1
        res = ok[0][1]
        self.set_resource(res, rtype, **params)
        return res
Example #6
0
    def get_resource_job(self, context, rtype, **params):
        # print('RM %s %s get_resource %s %s' % (id(self), self._context, rtype, params))
        key = dict(rtype=rtype, **params)
        already_done = key in self.allresources
        if already_done:
            return self.allresources[key]

        check_is_in('resource type', rtype, self.providers)

        prefix = self._make_prefix(rtype, **params)
        #         print('adding job prefix %r' % prefix)
        c = context.child(name=rtype, add_job_prefix=prefix, add_outdir=rtype)
        c._job_prefix = prefix
        # Add this point we should check if we already created the job
        ok = []
        errors = []
        for provider in self.providers[rtype]:
            try:
                res_i = provider(c, **params)
                ok.append((provider, res_i))
            except ResourceManager.CannotProvide as e:
                errors.append(e)
            except Exception as e:
                msg = 'Error while trying to get resource.\n'
                msg += ' type: %r params: %s\n' % (rtype, params)
                msg += 'While calling provider %r:\n' % provider
                msg += indent(traceback.format_exc(), '> ')
                raise Exception(msg)

        if not ok:
            msg = 'No provider could create this resource:\n'
            msg += "\n".join('- %s' % str(e) for e in errors)
            raise Exception(msg)

        if len(ok) >= 2:
            msg = 'The same resource could be created by two providers.'
            msg += '\n%s %s' % (rtype, params)
            for prov, _ in ok:
                msg += '\n - %s' % prov
            raise Exception(msg)

        assert len(ok) == 1
        res = ok[0][1]
        self.set_resource(res, rtype, **params)
        return res
Example #7
0
    def __init__(self, shape, neighborarea, centers=None, topology='plane'):
        '''
        :param shape:
        :param neighborarea:
        :param centers: if not None, area around centers
            
            Suppose 
                shape = (H, W)
                nighborarea = (X, Y)
                A = X * Y
                N = H * W
            Then 
                self.neighbor_indices_flat  
            is a K x N array.

        '''
        neighborarea = np.array(neighborarea)
        
        if not np.all(neighborarea <= shape):
            neighborarea = np.minimum(neighborarea, shape)
            
        assert neighborarea[0] <= shape[0]
        assert neighborarea[1] <= shape[1]
        # for each sensel, create an area 
        cmg = cmap(np.array(neighborarea), max_shape=shape)
        
        # if the area size is even, it is bumbed to the next integer
        assert cmg.shape[0] >= neighborarea[0]
        assert cmg.shape[1] >= neighborarea[1]
        assert cmg.shape[0] <= neighborarea[0] + 1
        assert cmg.shape[1] <= neighborarea[1] + 1
        # but we cannot be bigger than the area anyway
        assert cmg.shape[0] <= shape[0]
        assert cmg.shape[1] <= shape[1]
        self.area_shape = cmg.shape[0], cmg.shape[1]
        self.shape = shape
        self.H, self.W = shape
        self.X = self.area_shape[0]
        self.Y = self.area_shape[1]
        self.N = self.H * self.W
        self.A = self.X * self.Y
        
        self.topology = topology
        check_is_in(topology, self.topology, ['torus', 'plane'])
        
        # this is the important state
        self.neighbor_indices_flat = np.zeros((self.N, self.A), 'int32')
    
        # logger.info('Creating Flattening..')
        self.flattening = Flattening.by_rows(tuple(shape))
        # logger.info('..done')
        
        if centers is None:
            self.centers = diffeo_identity(shape)
        else:
            if centers.dtype == 'float':
                # continuous diffeo
                centers = np.round(centers).astype('int')
            self.centers = centers
            
        for coord in coords_iterate(shape):
            k = self.flattening.cell2index[coord]
            cm = cmg.copy()
            
            center = self.centers[coord]      
            cm[:, :, 0] += center[0]
            cm[:, :, 1] += center[1]
            # torus topology here
            if self.topology == 'torus':
                cm[:, :, 0] = cm[:, :, 0] % shape[0]  
                cm[:, :, 1] = cm[:, :, 1] % shape[1]
            elif self.topology == 'plane':
                for i in range(2):
                    cmin = cm[:, :, i].min()
                    if cmin < 0:
                        cm[:, :, i] -= cmin                    
                    assert cm[:, :, i].min() >= 0

                    cmax = cm[:, :, i].max()
                    if cmax >= shape[i]:
                        delta = -(cmax - (shape[i] - 1))                    
                        cm[:, :, i] += delta
                    
                    assert cm[:, :, i].max() < shape[i]
                    assert cm[:, :, i].min() >= 0
                        
            else:
                assert False

            for i in range(2):
                cmin, cmax = cm[:, :, i].min(), cm[:, :, i].max()
                assert cmin >= 0
                assert cmax < shape[i]

                
            indices = np.zeros(self.area_shape, 'int32')
            for a, b in coords_iterate(self.area_shape):
                c = tuple(cm[a, b, :])
                indices[a, b] = self.flattening.cell2index[c]
    
            # XXX using numpy's flattening 
            indices = np.array(indices.flat)
            # warnings.warn('remove bias due to ordering')
            # indices = np.random.permutation(indices)
            self.neighbor_indices_flat[k, :] = indices  
 def __init__(self, score, **kwargs):
     DiffeoActionEstimatorSimple.__init__(self, **kwargs)
     self.score = score
     check_is_in('score function', score,
                 DiffeoActionEstimatorNewUnc.scores)
Example #9
0
    def __init__(self, shape, neighborarea, centers=None, topology="plane"):
        """
        :param shape:
        :param neighborarea:
        :param centers: if not None, area around centers
            
            Suppose 
                shape = (H, W)
                nighborarea = (X, Y)
                A = X * Y
                N = H * W
            Then 
                self.neighbor_indices_flat  
            is a K x N array.

        """
        neighborarea = np.array(neighborarea)

        if not np.all(neighborarea <= shape):
            neighborarea = np.minimum(neighborarea, shape)

        assert neighborarea[0] <= shape[0]
        assert neighborarea[1] <= shape[1]
        # for each sensel, create an area
        cmg = cmap(np.array(neighborarea), max_shape=shape)

        # if the area size is even, it is bumbed to the next integer
        assert cmg.shape[0] >= neighborarea[0]
        assert cmg.shape[1] >= neighborarea[1]
        assert cmg.shape[0] <= neighborarea[0] + 1
        assert cmg.shape[1] <= neighborarea[1] + 1
        # but we cannot be bigger than the area anyway
        assert cmg.shape[0] <= shape[0]
        assert cmg.shape[1] <= shape[1]
        self.area_shape = cmg.shape[0], cmg.shape[1]
        self.shape = shape
        self.H, self.W = shape
        self.X = self.area_shape[0]
        self.Y = self.area_shape[1]
        self.N = self.H * self.W
        self.A = self.X * self.Y

        self.topology = topology
        check_is_in(topology, self.topology, ["torus", "plane"])

        # this is the important state
        self.neighbor_indices_flat = np.zeros((self.N, self.A), "int32")

        # logger.info('Creating Flattening..')
        self.flattening = Flattening.by_rows(tuple(shape))
        # logger.info('..done')

        if centers is None:
            self.centers = diffeo_identity(shape)
        else:
            if centers.dtype == "float":
                # continuous diffeo
                centers = np.round(centers).astype("int")
            self.centers = centers

        for coord in coords_iterate(shape):
            k = self.flattening.cell2index[coord]
            cm = cmg.copy()

            center = self.centers[coord]
            cm[:, :, 0] += center[0]
            cm[:, :, 1] += center[1]
            # torus topology here
            if self.topology == "torus":
                cm[:, :, 0] = cm[:, :, 0] % shape[0]
                cm[:, :, 1] = cm[:, :, 1] % shape[1]
            elif self.topology == "plane":
                for i in range(2):
                    cmin = cm[:, :, i].min()
                    if cmin < 0:
                        cm[:, :, i] -= cmin
                    assert cm[:, :, i].min() >= 0

                    cmax = cm[:, :, i].max()
                    if cmax >= shape[i]:
                        delta = -(cmax - (shape[i] - 1))
                        cm[:, :, i] += delta

                    assert cm[:, :, i].max() < shape[i]
                    assert cm[:, :, i].min() >= 0

            else:
                assert False

            for i in range(2):
                cmin, cmax = cm[:, :, i].min(), cm[:, :, i].max()
                assert cmin >= 0
                assert cmax < shape[i]

            indices = np.zeros(self.area_shape, "int32")
            for a, b in coords_iterate(self.area_shape):
                c = tuple(cm[a, b, :])
                indices[a, b] = self.flattening.cell2index[c]

            # XXX using numpy's flattening
            indices = np.array(indices.flat)
            # warnings.warn('remove bias due to ordering')
            # indices = np.random.permutation(indices)
            self.neighbor_indices_flat[k, :] = indices
 def __init__(self, score, **kwargs):
     DiffeoActionEstimatorSimple.__init__(self, **kwargs)
     self.score = score
     check_is_in("score function", score, DiffeoActionEstimatorNewUnc.scores)