Example #1
0
def main(argv=None):
    # unroll arguments of train
    config_agent.init_FLAGS('train')
    VARS['mode'] = 'train'
    load_data_lst(data_lst)
    FLAGS['input_queue']['capacity'] = 1
    Multi_gpu_solver().start()
Example #2
0
def main(argv=None):
    # unroll arguments of eval
    config_agent.init_FLAGS('eval')
    VARS['mode'] = 'eval'
    Eval_solver().start()
Example #3
0
def main(argv=None):

    # unroll arguments of train
    config_agent.init_FLAGS('train')
    Train_solver().start()
Example #4
0
                self.reader.close()

    def read_into_hdf5(self):
        max_steps = self.all_count // self.input_batch_size
        print('total steps: %d' % max_steps)
        records = ''

        for step in xrange(max_steps):
            hdf5_path = self.hdf5_path.replace('$', '%d' % step)
            f = h5py.File(hdf5_path, 'w')
            f.create_dataset('data', (self.input_batch_size, 3, 224, 224))
            f.create_dataset('label', (self.input_batch_size, 1, 1, 1))
            inputs = self.sess.run(self.inputs)
            assert (inputs['X'].shape[0] == self.input_batch_size)
            f['data'][:] = np.transpose(inputs['X'], [0, 3, 1, 2])[:]
            f['label'][:] = inputs['Y'].reshape(
                [self.input_batch_size, 1, 1, 1])[:]
            f.close()
            records += '%s\n' % hdf5_path
            if step % 1 == 0:
                print(step)

        with open(self.txt_path, 'w') as f:
            f.write(records)


if __name__ == '__main__':
    config_agent.init_FLAGS('train')
    VARS['mode'] = 'train'
    Fake_reader().start()
Example #5
0
def main(argv=None):
    #unroll arguments of prediction
    config_agent.init_FLAGS('eval')
    Output_solver().start()
Example #6
0
def main(argv=None):
    # unroll arguments of prediction
    config_agent.init_FLAGS('eval')
    VARS['mode'] = 'test'
    Test_solver().start()
Example #7
0
def main(argv=None):
    # unroll arguments of train
    config_agent.init_FLAGS('train')
    VARS['mode'] = 'train'
    Multi_gpu_solver().start()