Example #1
0
def remove_v2():
    while True:
        results = list(dbr.query("select date FROM `stock_daily_records` order by date limit  300;"))
        print results[-1].date
        if results[-1].date == datetime.date(2012, 6, 1):
            break
        dbr.query("delete FROM `stock_daily_records` order by date limit  300;")
Example #2
0
def remove_v2():
    while True:
        results = list(
            dbr.query(
                "select date FROM `stock_daily_records` order by date limit  300;"
            ))
        print results[-1].date
        if results[-1].date == datetime.date(2012, 6, 1):
            break
        dbr.query(
            "delete FROM `stock_daily_records` order by date limit  300;")
Example #3
0
def load_subjects(user_id,terms,offset,size):
    terms = load_terms(terms)
    
    total_weight = sum([r.idf_domain for r in terms])
    for r in terms:
        r.weight = r.idf_domain / total_weight

    term_ids = [str(r.term_id) for r in terms]



    r = dbr.query("""select s.pk_id,user_id,s.body,s.created_date,s.last_update,s.app_created_date,s.local_id,s.is_delete,s.is_todo,s.is_remind,s.plan_start_date,s.task_status,s.remind_datetime,s.remind_frequency,s.remind_next,s.closed_date from 
        (SELECT doc_id,sum(tf_idf) as tf_idf FROM term_doc  where user_id=%s and  term_id in (%s) group by doc_id) as t
        left join subjects s on t.doc_id = s.pk_id
        order by t.tf_idf desc limit 0,200""" %(str(user_id),','.join(term_ids)) )
    return list(r)


    doc_terms = list(dbr.select('term_doc',what="doc_id,term_id,tf,tf_idf",
        where="user_id=$user_id and term_id in $term_ids",vars=locals()))

    max_tf_idf = max([t.tf_idf for t in doc_terms])
    doc_ids = list(set([t.doc_id for t in doc_terms]))

    doc_weights = {}
    for dt in doc_terms:
        term_weight = [t.weight for t in terms if t.term_id==dt.term_id][0]
        dweight = (dt.tf_idf / max_tf_idf) * (term_weight/total_weight)
        if dt.doc_id in doc_weights:
            doc_weights[dt.doc_id] = doc_weights[dt.doc_id] + dweight
        else:
            doc_weights[dt.doc_id] = dweight 

    subjects = list(dbr.select('subjects',
        what="pk_id,user_id,body,created_date,last_update,local_id", 
        where="user_id=$user_id and pk_id in $doc_ids",vars=locals()))
    for s in subjects:
        s.weight = doc_weights[s.pk_id]         

    #tmp = [(k,v) for k,v in doc_weights.items()]
    subjects.sort(cmp=lambda x,y:cmp(y.weight,x.weight))
    print subjects
    return subjects

    for k,v in result.items():
        result[k].weight = v.idf_domain / total_weight

    #term_ids = [str(k.term_id) for k in result.values()] 

    #compute 匹配度
    rows = list(dbr.select('term_doc',what="doc_id",where="user_id=$user_id and term_id in $term_ids",vars=locals()))
    doc_ids = [r.doc_id for r in rows]
    subjects = list(dbr.select('subjects',
        what="pk_id,user_id,body,created_date,last_update,local_id", 
        where="user_id=$user_id and pk_id in $doc_ids",vars=locals()))
    return subjects
Example #4
0
def import_date_sums(str_date):
    sql = '''SELECT 'all' as stock_plate,count(*) as stock_count,
        avg(open_price) as open,avg(high_price) as high,avg(low_price) as low,avg(close_price) as close,avg(volume) as volume,avg(amount) as amount
        FROM `stock_daily_records` where date='%s' ''' % (str_date)
    #rows = dbr.query(sql)
    #insert_date_sum(str_date,rows)

    sql = '''SELECT stock_market_no as stock_plate,count(*) as stock_count,
        avg(open_price) as open,avg(high_price) as high,avg(low_price) as low,avg(close_price) as close,avg(volume) as volume,avg(amount) as amount
        FROM `stock_daily_records` where date='%s' and stock_market_no is not null group by stock_market_no''' % (str_date)
    rows = dbr.query(sql)
    insert_date_sum(str_date,rows)

    sql = '''SELECT stock_market_no as stock_plate,count(*) as stock_count
        FROM `stock_daily_records` where date='%s' and stock_market_no is not null and raise_drop>0 group by stock_market_no  ''' % (str_date)
    rows = dbr.query(sql)
    for r in rows:
        stock_plate = r.stock_plate
        dbw.update('date_sums',price_up_count=r.stock_count, where="trade_date=$str_date and stock_plate=$stock_plate",vars=locals())
    dbw.query("update date_sums set price_up_percent=price_up_count/stock_count where trade_date='%s'" % (str_date) )
Example #5
0
    def POST(self):
    	i = web.input(sql="")
    	rows = list(dbr.query(i.sql))

    	l = []
    	for r in rows:
    		code = comm.get_market_codes(r.stock_no)
        	if not code['pinyin'] : continue
        	l.append(web.storage(stock_no=r.stock_no,pinyin2=code['pinyin']) )    		 

    	r = web.storage(stocks=l,query=i.sql,count = len(l)) 
     	return render.index(r)
Example #6
0
    def POST(self):
        i = web.input(sql="")
        rows = list(dbr.query(i.sql))

        l = []
        for r in rows:
            code = comm.get_market_codes(r.stock_no)
            if not code['pinyin']: continue
            l.append(web.storage(stock_no=r.stock_no, pinyin2=code['pinyin']))

        r = web.storage(stocks=l, query=i.sql, count=len(l))
        return render.index(r)
Example #7
0
def getCategories(): #where %s is not null
    sql = """select %s,count(*) as count from %s  group by %s """ % (categoryField,tableName,categoryField)
    l = list(dbr.query(sql))
    print l
    count_sum = sum([r.count for r in l])
    
    d = {}
    for i in l:
        if not i[categoryField]:
            continue   #none的情况
        probability = float(i.count)/count_sum
        cat = i[categoryField]  
        d[cat] = web.storage(category=cat,count=i.count,probability=probability) 
        updateP(probability,i.count,cat,'','')
    
    return d
Example #8
0
def run_avg_daily(startm, endm):
    fields = [
        'open_price', 'high_price', 'low_price', 'close_price', 'volume',
        'raise_drop', 'raise_drop_rate', 'volume_updown', 'volume_updown_rate'
    ]

    str_what = ','.join(
        ['avg(%s) as avg_%s' % (field, field) for field in fields])
    sql = "SELECT date,%s FROM `stock_daily_records` where date>='%s' and date<'%s' and volume>0 GROUP BY date order by date desc;" % (
        str_what, startm, endm)
    l = list(dbr.query(sql))
    for i in l:
        dbw.query(
            "update date_sum_infos set %s where date='%s'" %
            (','.join(['%s=%s' % (k, v)
                       for k, v in i.items() if k != 'date']), i.date))
Example #9
0
def computeOneFeatue(categories,field):
    #where category is not null and feature1 is not null  
    sql="select %s,%s,count(*) as count from %s where %s is not null and %s is not null group by %s,%s" % (field,categoryField,tableName,field,categoryField,field,categoryField)
    l = list(dbr.query(sql))
    total_count = sum([r.count for r in l]) 
    features = list(set([r[field] for r in l]))    
    d={}
    for cat,catV in categories.items():       
        for f in features:
            if not f:
                continue   #none的情况?
            f_count = sum([r.count for r in l if r[categoryField]==cat and r[field]==f])
            probability = float(f_count)/catV.count
            d['%s|%s'%(f,cat)] = web.storage(probability=probability,count=f_count) 
            updateP(probability,f_count,cat,f,field)
    return d 
Example #10
0
def getCategories():  #where %s is not null
    sql = """select %s,count(*) as count from %s  group by %s """ % (
        categoryField, tableName, categoryField)
    l = list(dbr.query(sql))
    print l
    count_sum = sum([r.count for r in l])

    d = {}
    for i in l:
        if not i[categoryField]:
            continue  #none的情况
        probability = float(i.count) / count_sum
        cat = i[categoryField]
        d[cat] = web.storage(category=cat,
                             count=i.count,
                             probability=probability)
        updateP(probability, i.count, cat, '', '')

    return d
Example #11
0
def computeOneFeatue(categories, field):
    #where category is not null and feature1 is not null
    sql = "select %s,%s,count(*) as count from %s where %s is not null and %s is not null group by %s,%s" % (
        field, categoryField, tableName, field, categoryField, field,
        categoryField)
    l = list(dbr.query(sql))
    total_count = sum([r.count for r in l])
    features = list(set([r[field] for r in l]))
    d = {}
    for cat, catV in categories.items():
        for f in features:
            if not f:
                continue  #none的情况?
            f_count = sum([
                r.count for r in l if r[categoryField] == cat and r[field] == f
            ])
            probability = float(f_count) / catV.count
            d['%s|%s' % (f, cat)] = web.storage(probability=probability,
                                                count=f_count)
            updateP(probability, f_count, cat, f, field)
    return d
Example #12
0
def get_plate_cout():
    sql = "SELECT market_code,count(*) as count  FROM `stock_base_infos` where high_date_188=trade_date and market_code<>'sb' group by market_code order by count(*) desc;"
    return list(dbr.query(sql))
Example #13
0
def get_last_count(field_name):
    sql = "SELECT count(*) as count FROM `stock_base_infos` where  %s=trade_date;" % (field_name)
    return list(dbr.query(sql))[0].count
Example #14
0
def load_subjects(user_id, terms, offset, size):
    terms = load_terms(terms)

    total_weight = sum([r.idf_domain for r in terms])
    for r in terms:
        r.weight = r.idf_domain / total_weight

    term_ids = [str(r.term_id) for r in terms]

    r = dbr.query(
        """select s.pk_id,user_id,s.body,s.created_date,s.last_update,s.app_created_date,s.local_id,s.is_delete,s.is_todo,s.is_remind,s.plan_start_date,s.task_status,s.remind_datetime,s.remind_frequency,s.remind_next,s.closed_date from 
        (SELECT doc_id,sum(tf_idf) as tf_idf FROM term_doc  where user_id=%s and  term_id in (%s) group by doc_id) as t
        left join subjects s on t.doc_id = s.pk_id
        order by t.tf_idf desc limit 0,200""" %
        (str(user_id), ','.join(term_ids)))
    return list(r)

    doc_terms = list(
        dbr.select('term_doc',
                   what="doc_id,term_id,tf,tf_idf",
                   where="user_id=$user_id and term_id in $term_ids",
                   vars=locals()))

    max_tf_idf = max([t.tf_idf for t in doc_terms])
    doc_ids = list(set([t.doc_id for t in doc_terms]))

    doc_weights = {}
    for dt in doc_terms:
        term_weight = [t.weight for t in terms if t.term_id == dt.term_id][0]
        dweight = (dt.tf_idf / max_tf_idf) * (term_weight / total_weight)
        if dt.doc_id in doc_weights:
            doc_weights[dt.doc_id] = doc_weights[dt.doc_id] + dweight
        else:
            doc_weights[dt.doc_id] = dweight

    subjects = list(
        dbr.select('subjects',
                   what="pk_id,user_id,body,created_date,last_update,local_id",
                   where="user_id=$user_id and pk_id in $doc_ids",
                   vars=locals()))
    for s in subjects:
        s.weight = doc_weights[s.pk_id]

    #tmp = [(k,v) for k,v in doc_weights.items()]
    subjects.sort(cmp=lambda x, y: cmp(y.weight, x.weight))
    print subjects
    return subjects

    for k, v in result.items():
        result[k].weight = v.idf_domain / total_weight

    #term_ids = [str(k.term_id) for k in result.values()]

    #compute 匹配度
    rows = list(
        dbr.select('term_doc',
                   what="doc_id",
                   where="user_id=$user_id and term_id in $term_ids",
                   vars=locals()))
    doc_ids = [r.doc_id for r in rows]
    subjects = list(
        dbr.select('subjects',
                   what="pk_id,user_id,body,created_date,last_update,local_id",
                   where="user_id=$user_id and pk_id in $doc_ids",
                   vars=locals()))
    return subjects
Example #15
0
def __get_plate_cout(field_name):
    sql = """SELECT market_code,count(*) as %s_count  FROM `stock_base_infos` 
    where %s=trade_date and %s
    group by market_code 
    order by count(*) desc;""" % (field_name, field_name, comm_codition)
    return list(dbr.query(sql))
Example #16
0
def load_trade_dates():
    sql = "SELECT DISTINCT trade_date FROM `stock_daily` ORDER BY trade_date desc limit 0,10"
    return list(dbr.query(sql))
Example #17
0
def get_plate_cout():
    sql = "SELECT market_code,count(*) as count  FROM `stock_base_infos` where high_date_188=trade_date and market_code<>'sb' group by market_code order by count(*) desc;"
    return list(dbr.query(sql))
Example #18
0
def get_all_avg():
    sql = "select 'ALL' as market_code,count(*) as count,%s from `stock_base_infos` where %s ;" % (
        sql_seg, comm_codition)
    return list(dbr.query(sql))
Example #19
0
def close_high_than_open():
    sql="select market_code,count(*) as cho_count from `stock_base_infos` where %s and close>open group by market_code;"  % (comm_codition)
    return list(dbr.query(sql))
Example #20
0
def get_all_avg():
    sql="select 'ALL' as market_code,count(*) as count,%s from `stock_base_infos` where %s ;" % (sql_seg,comm_codition)
    return list(dbr.query(sql))
Example #21
0
def get_market_avg():
    sql="select market_code,count(*) as count,%s from `stock_base_infos` where %s group by market_code;" % (sql_seg,comm_codition)
    return list(dbr.query(sql))
Example #22
0
def getFeatures(featureField):
    sql = "select distinct %s from %s " % (featureField, tableName)
    return [r[featureField] for r in dbr.query(sql)]
Example #23
0
def load_trade_dates():
    sql = "SELECT DISTINCT trade_date FROM `stock_daily` ORDER BY trade_date desc limit 0,10"
    return list(dbr.query(sql))
Example #24
0
def get_market_avg():
    sql = "select market_code,count(*) as count,%s from `stock_base_infos` where %s group by market_code;" % (
        sql_seg, comm_codition)
    return list(dbr.query(sql))
Example #25
0
def getFeatures(featureField):
    sql = "select distinct %s from %s " % (featureField,tableName)
    return [r[featureField] for r in dbr.query(sql)]
Example #26
0
def get_last_count(field_name):
    sql = "SELECT count(*) as count FROM `stock_base_infos` where  %s=trade_date;" % (
        field_name)
    return list(dbr.query(sql))[0].count
Example #27
0
def __get_plate_cout(field_name):
    sql="""SELECT market_code,count(*) as %s_count  FROM `stock_base_infos` 
    where %s=trade_date and %s
    group by market_code 
    order by count(*) desc;""" % (field_name,field_name,comm_codition)
    return list(dbr.query(sql))
Example #28
0
def close_high_than_open():
    sql = "select market_code,count(*) as cho_count from `stock_base_infos` where %s and close>open group by market_code;" % (
        comm_codition)
    return list(dbr.query(sql))