from config.easy_dict import EasyDict config = EasyDict() config.cols_to_use = [0,1,2,3] # may want to change: feat_size, layer_dims, etc. config.model_kwargs = {"num_features":1, "num_classes": 3} config.data_path = "/fast_scratch/WatChMaL/data/pointnet/pointnet_trainval.h5" config.indices_file = "/fast_scratch/WatChMaL/data/pointnet/pointnet_trainval_idxs.npz" #make sure to change this config.dump_path = "/home/dgreen/training_outputs/pointnet2/no_time/adam/" config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'cuda:6' config.optimizer = "Adam" config.optimizer_kwargs = {"lr":1e-3, "betas": (0.9, 0.999)} config.use_scheduler = False config.scheduler_kwargs = {"mode":"min", "min_lr":1e-6, "patience":1, "verbose":True} config.scheduler_step = 190 config.batch_size = 32 config.epochs = 20 config.report_interval = 200 config.num_val_batches = 256 config.valid_interval = 1000 config.validate_batch_size = 32
# for commit 300052df3430228ef5e8bc55e46845d95d5e57f0 from config.easy_dict import EasyDict config = EasyDict() config.model_name = "encoded_cheby_highway" config.model_kwargs = { "k": 3, "layers": 20, "graph_w": 256, "concat_layers": [3, 5, 7, 10, 13, 16, 20], "lin_ws": [64, 64] } config.data_path = "/data/WatChMaL/data/IWCDmPMT_4pi_fulltank_test/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval.h5" config.indices_file = "/data/WatChMaL/data/IWCDmPMT_4pi_fulltank_test/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval_idxs.npz" config.edge_index_pickle = "/data/WatChMaL/graphnets/visualization/mpmt_edges_dict.pkl" config.dump_path = "/data/WatChMaL/graphnets/GraphNets/dump/" + config.model_name config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [6] config.optimizer = "SGD" config.optimizer_kwargs = { "lr": 0.01, "weight_decay": 1e-3, "momentum": 0.9, "nesterov": True
# for commit 3277f51e257c94e2ce98545bfd5115b29 from config.easy_dict import EasyDict config = EasyDict() ## Model config.model_name = "gcn_kipf" config.model_kwargs = {"w1": 4, "w2": 8, "w3": 16} ## Data paths config.data_path = "/app/test_data/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval.h5" config.indices_file = "/app/test_data/split_h5/IWCDmPMT_4pi_fulltank_test_graphnet_trainval_idxs.npz" config.edge_index_pickle = "/app/GraphNets/metadata/edges_dict.pkl" ## Log location config.dump_path = "/app/GraphNets/dump/gcn" ## Computer Parameters config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [0] # Optimizer Parameters config.optimizer = "Adam" config.optimizer_kwargs = {"lr": 0.01, "weight_decay": 5e-4} ## Training parameters config.batch_size = 32 config.epochs = 1
from config.easy_dict import EasyDict config = EasyDict() config.model_name = "Pointnet" config.cols_to_use = [0, 1, 2, 3] # may want to change: feat_size, layer_dims, etc. config.model_kwargs = { "in_channels": len(config.cols_to_use), "num_classes": 3 } config.data_path = "/data/WatChMaL/data/pointnet/splits/pointnet_trainval.h5" config.indices_file = "/data/WatChMaL/data/pointnet/splits/pointnet_trainval_idxs.npz" config.dump_path = "/home/dgreen/training_outputs/" config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [7] config.optimizer = "SGD" config.optimizer_kwargs = { "lr": 0.01, "weight_decay": 1e-3, "momentum": 0.9, "nesterov": True } config.scheduler_kwargs = { "mode": "min",
# for commit 300052df3430228ef5e8bc55e46845d95d5e57f0 from config.easy_dict import EasyDict config = EasyDict() config.model_name = "cheby_batch_topk" config.model_kwargs = {"layers": 3, "graph_w": 128, "lin_ws": [32, 8], 'k': 3} config.data_path = "/fast_scratch/IWCDmPMT_4pi_fulltank_9M_graphnet_trainval.h5" config.indices_file = "/fast_scratch/IWCDmPMT_4pi_fulltank_9M_graphnet_trainval_idxs.npz" config.edge_index_pickle = "/project_dir/visualization/edges_dict.pkl" config.dump_path = "/project_dir/dump/" + config.model_name config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [0] config.optimizer = "SGD" config.optimizer_kwargs = { "lr": 0.01, "weight_decay": 1e-3, "momentum": 0.9, "nesterov": True } config.scheduler_kwargs = { "mode": "min", "min_lr": 1e-6, "patience": 10,
# for commit 300052df3430228ef5e8bc55e46845d95d5e57f0 from config.easy_dict import EasyDict config = EasyDict() ## Model config.model_name = "gcn_kipf" config.model_kwargs = {"w1":10, "w2":12, "w3":8} ## Data paths config.data_path = "/fast_scratch/NeutronGNN/iwcd_mpmt_shorttank_neutrongnn_trainval.h5" config.indices_file = "/fast_scratch/NeutronGNN/iwcd_mpmt_shorttank_neutrongnn_trainval_idxs.npz" ## Log location config.dump_path = "/fast_scratch/NeutronGNN/dump/" + config.model_name ## Computer parameters config.num_data_workers = 0 # Sometime crashes if we do multiprocessing config.device = 'gpu' config.gpu_list = [1] ## Optimizer parameters config.optimizer = "Adam" config.optimizer_kwargs = {"lr":1e-3} #config.optimizer_kwargs = {"lr":0.01, "weight_decay":5e-4} ## Scheduler parameters config.scheduler_kwargs = {"mode":"min", "min_lr":1e-6, "patience":1, "verbose":True} config.scheduler_step = 190