Example #1
0
def create_D_function(camp, max_bid):
    large_storage_media = "/media/onetbssd/rlb/"

    src = "ipinyou"

    obj_type = "clk"
    clk_vp = 1
    # N = 10000
    N = 500
    c0 = 1 / 8
    gamma = 1
    overwrite = False

    if src == "ipinyou":
        camps = config.ipinyou_camps_to_test
        data_path = config.ipinyouPath
        max_market_price = config.ipinyou_max_market_price

    camp_info = config.get_camp_info(camp, src)
    aution_in_file = data_path + camp + "/test.theta.txt"
    opt_obj = Opt_Obj(obj_type, int(clk_vp * camp_info["cost_train"] / camp_info["clk_train"]))
    B = int(camp_info["cost_train"] / camp_info["imp_train"] * c0 * N)

    large_storage_folder = large_storage_media + src + "/" + camp + "/bid-model/"

    if not os.path.exists(large_storage_folder):
        os.makedirs(large_storage_folder)

    env = BidEnv(camp_info, aution_in_file)
    agent = bidding_agent_rtb_rl_dp_tabular()
    agent.init(env, camp_info, opt_obj, gamma)

    setting = "{}, camp={}, algo={}, N={}, c0={}" \
        .format(src, camp, "rlb_rl_fa", N, c0)
    bid_log_path = config.projectPath + "bid-log/{}.txt".format(setting)

    # Approximating D(t,b) function
    m_pdf = calc_m_pdf(camp_info["price_counter_train"])
    D_function_path = large_storage_folder + "rlb_dnb_gamma={}_N={}_{}.txt".format(gamma, N, obj_type)
    print("D_function_path = " + D_function_path)
    if (not os.path.isfile(D_function_path)) or overwrite:
        # print("START: Approximating V function by dynamic programming... ")
        agent.calc_Dnb(N, B, max_market_price, m_pdf, D_function_path)
        # print("END: Approximating V function by dynamic programming.")
    else:
        agent.load_Dnb(N,B,D_function_path)

    X, Y = agent.run_and_output_datasets(bid_log_path, N, c0, max_bid,  delimiter=" ", save_log=False)

    # Then train a NN using the Dnd function
    NN_model_path = large_storage_folder + "fa_dnb_gamma={}_N={}_{}.pickle".format(gamma, N, obj_type)
    NN_model_txt_path = large_storage_folder + "fa_dnb_gamma={}_N={}_{}.txt".format(gamma, N, obj_type)

    return agent, src, N, D_function_path, large_storage_folder, NN_model_path, NN_model_txt_path, opt_obj, camp_info, X, Y
Example #2
0
    dim = 2
    net_type = "nn"
    src = "ipinyou"

    camp = "1458"
    if len(_argv) == 2:
        camp = _argv[1]

    obj_type = "clk"
    clk_vp = 1
    N = 5000
    tag = src + "_" + camp + "_" + model + "_" + net_type + "_N={}_{}".format(
        N, obj_type) + "_" + getTime()
    if src == "ipinyou":
        data_path = config.ipinyouPath
        camp_info = config.get_camp_info(camp, src)
    elif src == 'vlion':
        data_path = config.vlionPath
        camp_info = config.get_camp_info(camp, src)
    elif src == "yoyi":
        data_path = config.yoyiPath
        camp_info = config.get_camp_info(camp, src)

    opt_obj = Opt_Obj(
        obj_type,
        int(clk_vp * camp_info["cost_train"] / camp_info["clk_train"]))
    avg_theta = camp_info["clk_train"] / camp_info["imp_train"]
    if obj_type == "profit":
        avg_theta *= opt_obj.clk_v

    b_bound = 800
Example #3
0
if model == "dnb":
	dim = 2
	net_type = "nn"
	src = "ipinyou"

	camp = "1458"
	if len(_argv) == 2:
		camp = _argv[1]

	obj_type = "clk"
	clk_vp = 1
	N = 5000
	tag = src + "_" + camp + "_" + model + "_" + net_type + "_N={}_{}".format(N, obj_type) + "_" + getTime()
	if src == "ipinyou":
		data_path = config.ipinyouPath
		camp_info = config.get_camp_info(camp, src)
	elif src == 'vlion':
		data_path = config.vlionPath
		camp_info = config.get_camp_info(camp, src)
	elif src == "yoyi":
		data_path = config.yoyiPath
		camp_info = config.get_camp_info(camp, src)

	opt_obj = Opt_Obj(obj_type, int(clk_vp * camp_info["cost_train"] / camp_info["clk_train"]))
	avg_theta = camp_info["clk_train"] / camp_info["imp_train"]
	if obj_type == "profit":
		avg_theta *= opt_obj.clk_v

	b_bound = 800
	n_bound = 50
	max_train_round = 500
Example #4
0
# Generate testing and training datasets for target campaing.
camp_to_test = config.ipinyou_camps_to_test[0]
camp_to_test_file = data_path + camp_to_test + "/test.theta.txt"
training_filename, testing_filename, len_training, len_testing = generate_training_and_evaluation_files_for_target_camp(
    camp_to_test_file, 0.8)
T_shoots_list = [.1, .2, .3, .4, .5, .6, .7, .8, .9, 1]
#T_shoots_list = [.1]
T_shoots_list = np.array(T_shoots_list)
T_shoots_list = T_shoots_list * len_training
T_shoots_list = T_shoots_list.astype(int)

for T_shoots_learning_size in T_shoots_list:

    for camp in camps:
        camp_info = config.get_camp_info(camp, src)
        aution_in_file = data_path + camp + "/test.theta.txt"
        opt_obj = Opt_Obj(
            obj_type,
            int(clk_vp * camp_info["cost_train"] / camp_info["clk_train"]))
        B = int(camp_info["cost_train"] / camp_info["imp_train"] * c0 * N)

        large_storage_media = "/media/onetbssd/rlb/"

        # Create log file folder location.
        if not os.path.exists(config.projectPath + "bid-log"):
            os.makedirs(config.projectPath + "bid-log")

        # Create training merged set:
        train_camps = []