def load_net(self, net_name, set_net_version=None):
     net_path = os.path.join(self.trained_nets_path, net_name, 'model_dir', 'dynamic_net.pth')
     temp_opt = config.get_configurations()
     opt_path = os.path.join(self.trained_nets_path, net_name, 'config.txt')
     if os.path.exists(opt_path):
         opt = utils.read_config_and_arrange_opt(opt_path, temp_opt)
     else:
         opt = temp_opt
     self.main_widget.dynamic_model = InferenceModel(opt, set_net_version=set_net_version)
     self.main_widget.dynamic_model.load_network(net_path)
Example #2
0
def setup(opts):

    ckpt = opts["style_dir"]
    model_path = ckpt + "/" + "model_dir/dynamic_net.pth"
    config_path = ckpt + "/" + "config.json"
    
    conf = json.load(open(config_path))
    set_net_version = conf["network_type"]
    opt = config.get_configurations()

    dynamic_model = InferenceModel(opt, set_net_version=set_net_version)
    dynamic_model.load_network(model_path)
    
    return {"dynamic_model" : dynamic_model,
            "network_type" : set_net_version }
Example #3
0
parser = argparse.ArgumentParser()
parser.add_argument('--network_name', default=network_name)
parser.add_argument('--num_of_images', default=num_of_images, type=int)

inference_opt = parser.parse_args()
network_name = inference_opt.network_name
num_of_images = inference_opt.num_of_images

networks_path = os.path.join('trained_nets', network_name)
model_path = os.path.join(networks_path, 'model_dir', 'dynamic_net.pth')
config_path = os.path.join(networks_path, 'config.txt')
save_path = os.path.join('results', 'inference_results')
if not os.path.exists(save_path):
    utils.make_dirs(save_path)

opt = config.get_configurations(parser=parser)
if os.path.exists(config_path):
    utils.read_config_and_arrange_opt(config_path, opt)


dynamic_model = InferenceModel(opt)
dynamic_model.load_network(model_path)
dynamic_model.net.train()

to_tensor = transforms.ToTensor()
to_pil_image = transforms.ToPILImage()

first_image = True
input_tensor = torch.randn((128, dynamic_model.opt.z_size)).view(-1, dynamic_model.opt.z_size, 1, 1).to(dynamic_model.device)
for alpha in tqdm(alphas):
    output_tensor = dynamic_model.forward_and_recover(input_tensor.requires_grad_(False), alpha=alpha)
Example #4
0
#!/usr/bin/env python
import os

#BA modules
import log
import git
#import render
import config
#import template
import cli
import run
import notifications



if __name__ == '__main__':

    # Brief sketch follows
    args = cli.parse_cli()
    configs = config.get_configurations(os.getcwd())
    run.run_process(args, configs)


Example #5
0
import config
from models.bank_model import BankModel

opt = config.get_configurations()

if __name__ == "__main__":
    model = BankModel(opt)
    model.init_paths()
    model.write_config()
    if opt.training_scheme == 'all':
        model.train(main_training=True)
        print('Trained main network')
        model.net.loop_count = 2
        model.train(main_training=False)
        print('Trained bank network')
    elif opt.training_scheme == 'bank':
        model.net.loop_count = 2
        model.load_pre_trained()
        model.train(main_training=False)
        print('Trained bank network')
    elif opt.training_scheme == 'main':
        model.train(main_training=True)
        print('Trained main network')