def test(): log = lambda message: sys.stdout.write(message) writer = Writer('D:/exe/imod/IMOD_USER/pusair-output') try: log('Reading config... ') config.parse() if config.config['gradient'] > 1: raise ValueError('Maximum gradient is 1') log('Done\n') p, adj = slurp.prep( # fbore=str('D:/exe/imod/IMOD_USER/pusair-input/Boreholes_Dimas.ipf'), fbore=str('D:/exe/imod/IMOD_USER/pusair-input/Boreholes_Jakarta.ipf'), fscreen=str('data/well_M_z_all.ipf'), config=config, log=log) interpolator = Interpolator(p, adj, writer, log) interpolator.interpolate() log('\n[DONE]') except Exception as e: log('\n\n[ERROR] {}'.format(e)) traceback.print_exc() writer.reset()
def run(self): log = lambda message: self.emit(SIGNAL('logging(QString)'), message) writer = Writer(str(self.text_output)) try: log('Reading config... ') config.parse() if config.config['gradient'] > 1: raise ValueError('Maximum gradient is 1') log('Done\n') p, adj = slurp.prep( fbore=str(self.text_input), fscreen=str(self.text_screen), config=config, log=log) interpolator = Interpolator(p, adj, writer, log) interpolator.interpolate() log('\n[DONE]') except Exception as e: log('\n\n[ERROR] {}'.format(e)) traceback.print_exc() self.emit(SIGNAL('finish_program()'))
def main(): parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('-c', dest='config') parser.add_argument('-f', dest='test_file') parser.add_argument('-e', dest='epoch', type=int) args = parser.parse_args() config.parse(args.config) config.cuda = False vocab = load_vocabulary() model = build_model(len(vocab.word2index), load_ckpt=True, ckpt_epoch=args.epoch) config.use_cuda = False model.cpu() bot = BotAgent(model, vocab) if args.test_file is not None: with open(args.test_file) as file: question_list = [] for line in file: question_list.append(line[:-1]) for question in question_list: print('> %s' % question) print('bot: %s' % bot.response(question)) else: while True: user_input = input('me: ') if user_input.strip() == '': continue print('%s: %s' % ('bot', bot.response(user_input)))
def main(host, port): config.parse() server = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) server.bind((host, port)) server.listen(64) while True: (client, address) = server.accept() handle(client) client.close()
def main(): if len(sys.argv) != 5: print '<usage> name ip port videoport' sys.exit(1) instance.name = sys.argv[1] instance.local_ip = sys.argv[2] instance.listen_port = int(sys.argv[3]) instance.video_port = int(sys.argv[3]) config.parse() if instance.curr_master == instance.name: master.init_master() else: network.join_meeting() instance.initialized = True api.init_gui() print "### done init_gui() ###" api.init_video_module() instance.last_heartbeat_rcvd = time.time() instance.master_thread = master.MasterThread() print "### 1 ###" if instance.curr_video_port != 0: api.connect_to_video_server(instance.curr_video_name, instance.curr_video_ip, instance.curr_video_port) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) network.ListeningThread(s) network.ConnectingThread() print "### 2 ###" print "### I am up ###" while 1: try: command = raw_input(">>>") if len(command) == 0: continue commands = command.split(':') if commands[0] == 'q': instance.has_exited = True network.close_connections() sys.exit(0) elif commands[0] == 'text': api.send_text_msg(commands[1]) elif commands[0] == 'video': api.send_video_req() else: print 'This command is not supported' except KeyboardInterrupt: sys.exit(1)
def main(): uri = "http://localhost:5985/" Perscon_utils.init_url (uri) configfile = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..", "perscon", "perscon.conf") config.parse(configfile) base = config.get('photofiles', 'base') print "base dir is %s" % base for root, dirs, files in os.walk(base): for f in files: skip = False fname = os.path.join(root, f) meta = {} root_name,ext = os.path.splitext(fname) fin = open(fname, 'rb') try: print "reading %s" % fname data = fin.read() fin.seek(0) exif_tags = EXIF.process_file(fin) except: print >> sys.stderr, "error reading: %s" % fname skip = True finally: fin.close() if skip or (exif_tags == {}): print "skipping" continue if exif_tags.has_key('EXIF DateTimeOriginal'): raw = str(exif_tags['EXIF DateTimeOriginal']) tm = dateutil.parser.parse(raw) tt = tm.timetuple() else: tt = datetime.fromtimestamp(os.path.getmtime(fname)).timetuple() tstamp = time.mktime(tt) guid = hashlib.md5(file(fname).read()).hexdigest() uid = guid + ext m = { 'type':'org.perscon.photofiles', 'mtime':tstamp, 'att': [uid], 'uid': guid, 'frm': [], 'to':[] } # rpath = relpath(root,base) print base print fname m['caption'] = os.path.join(base, os.path.basename(fname)) mime,mime_enc = mimetypes.guess_type(fname) Perscon_utils.rpc('att/'+uid, headers={'content-type': mime,'content-length': len(data)}, data=data) meta['file_path'] = fname m['meta'] = meta mj = simplejson.dumps(m, indent=2) print mj Perscon_utils.rpc('thing/' + uid, data=mj)
def setUpClass (cls): config_dict = config.parse() cls.USER_ID = config_dict['user_id'] cls.SNIPPET_ID = config_dict['snippet_id'] cls.API_URL = config_dict['url'] + '/users' cls.ACCESS_TOKEN = config_dict['access_token'] cls.SNIPPET = json.dumps(config_dict['snippet'])
def main(): import argparse parser = argparse.ArgumentParser(description='rCk') parser.add_argument('--config', metavar='PATH', type=str, help='path to configuration file', default='/etc/rcheck/deploy.yml') parser.add_argument('--tag-prefix', metavar='PREFIX', type=str, help='prefix of the tag name', default='v') args = parser.parse_args() if not os.path.isfile(args.config): print('File "{0}" does not exist.'.format(args.config)) exit(1) yamltree = {} with open(args.config, 'r') as stream: yamltree = yaml.load(stream) config.verify(yamltree) cfg = config.parse(yamltree) for environment in cfg.environments: print('Initializing environment "{0}" at "{1}"'.format(environment.name, environment.path)) repo = git.try_clone(environment.path , cfg.giturl) repo.fetch() tags = repo.tag_list() spec = semver.Spec(environment.ref) last_tag_to_match = '' for tag in tags: version = semver.Version(tag) if spec.match(version): last_tag_to_match = tag if last_tag_to_match == '': print('- No tag match for ref spec "{0}"'.format(environment.ref)) else: print('- Checkout tag {0} for environment {1}'.format(last_tag_to_match, environment.name)) repo.checkout(last_tag_to_match)
def handler(eniron, start_response): prefix = eniron.get('PATH_PREFIX', None) uri = eniron['PATH_INFO'] if prefix and uri.startswith(prefix): uri = uri[len(prefix):] match = canteen_request.match(uri) if not match: start_response("404 Wrong Path", [("Content-type", 'application/xml; charset=utf-8')]) return ['<xml version="1.0"><info>{provider}/{canteen}/{feed}.xml</info></xml>'] request = utils.Request(eniron) try: content = parse(request, *(match.group('dirs').split('/') + [match.group('file')])) content = content.encode('utf8') start_response('200 OK', [('Content-Type', 'application/xml; charset=utf-8'), ('Content-Length', str(len(content)))]) return (content,) except utils.Redirect as e: start_response('301 Permanent Redirect', [('Location', e.location)]) return ('',) except utils.ParserNotFound as e: start_response('404 Parser not found', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason,) except utils.SourceNotFound as e: start_response('404 Source not found', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason,) except utils.FeedNotFound as e: start_response('404 Feed not found', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason,) except utils.NotFoundError as e: start_response('404 Unknown file format', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason,) except Exception: traceback.print_exception(*sys.exc_info()) start_response('500 Internal Server Error', []) return ('', )
def handler(eniron, start_response): prefix = eniron.get('PATH_PREFIX', None) uri = eniron['PATH_INFO'] if prefix and uri.startswith(prefix): uri = uri[len(prefix):] match = canteen_request.match(uri) if not match: start_response("404 Wrong Path", [("Content-type", 'application/xml; charset=utf-8')]) return ['<xml version="1.0"><info>{provider}/{canteen}.xml</info></xml>'] elif match.group('provider') not in providers: start_response('404 Provider not found', []) elif match.group('canteen') not in providers[match.group('provider')]['canteens']: start_response('404 Canteen not found', []) else: try: content = parse(match.group('provider'), match.group('canteen'), bool(match.group('today'))) except Exception: traceback.print_exception(*sys.exc_info()) start_response('500 Internal Server Error', []) return content = content.encode('utf8') start_response('200 OK', [('Content-Type', 'application/xml; charset=utf-8'), ('Content-length', str(len(content)))]) return (content,)
def __init__(self, configdict=None): "Set up configuration and run initialization functions." if not configdict: import config self.config = config.parse() else: self.config = configdict self.init()
def main() -> None: conf = config.parse(sys.argv) slots = cgroup.SlotManager(conf.limit) if not slots.available() and conf.limit.any_set(): print("W: limits requested but cgroups are not available", file=sys.stderr, flush=True) start_web(conf, slots)
def main(argv = None): """ main entry point """ configfile = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..", "perscon", "perscon.conf") config.parse(configfile) service = "google.com" username = config.user(service) password = keyring.get_password(service, username) gd_client = gdata.photos.service.PhotosService() gd_client.email = username gd_client.password = password gd_client.source = 'py-perscon-v01' gd_client.ProgrammaticLogin() uri = "http://localhost:5985/" Perscon_utils.init_url(uri) ##### # Get pictures from Picasa ##### albums = gd_client.GetUserFeed(user=username) # iterate over albums for album in albums.entry: print 'title: %s, number of photos: %s, id: %s' % (album.title.text, album.numphotos.text, album.gphoto_id.text) album_id = album.gphoto_id.text # iterate over pictures photos = gd_client.GetFeed('/data/feed/api/user/%s/albumid/%s?kind=photo' % (username, album_id)) for photo in photos.entry: print 'Photo title:', photo.title.text image_url = photo.content.src uid = photo.gphoto_id.text mime,mime_enc = mimetypes.guess_type(photo.content.src) if not mime: mime = 'application/octet-stream' fin = urllib2.urlopen(image_url) data = fin.read() fin.close() Perscon_utils.rpc('att/'+uid, headers={'Content-type':mime,'Content-length':len(data)}, data=data) tstamp = photo.timestamp.text m = {'origin':'com.google.picasa', 'mtime':tstamp, 'att': [uid], 'uid': uid, 'tags':[] } meta={}
def main(): # 解析参数 config.parse() args = config.args for k, v in vars(args).items(): logger.info(f"{k}:{v}") # 解析参数, 判断使用的设备 device, n_gpu = args_check(args) os.makedirs(args.output_dir, exist_ok=True) forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) args.forward_batch_size = forward_batch_size # 加载student的配置文件, 校验最大序列长度小于我们的配置中的序列长度 bert_config_S = BertConfig.from_json_file(args.bert_config_file_S) assert args.max_seq_length <= bert_config_S.max_position_embeddings # 准备task processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] # 所有的labels label_list = processor.get_labels() num_labels = len(label_list) # 读取数据 tokenizer = BertTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) eval_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True) logger.info("评估数据集已加载") model_S = BertSPCSimple(bert_config_S, num_labels=num_labels, args=args) # 加载student模型 assert args.tuned_checkpoint_S is not None state_dict_S = torch.load(args.tuned_checkpoint_S, map_location='cpu') model_S.load_state_dict(state_dict_S) logger.info("Student模型已加载") # 开始预测 res = predict(model_S, eval_dataset, args=args) print(res)
def main(): """Runs the pipsource command utility.""" args = parser.parse_args() reqs = requirements.parse(os.path.expanduser(args.requirements_file)) configs = config.parse(os.path.expanduser(args.config)) if args.command == 'vendor': _run_vendor(reqs, configs)
def setUpClass(cls): config_dict = config.parse() cls.USER_ID = config_dict['user_id'] cls.SNIPPET_ID = config_dict['snippet_id'] cls.API_URL = config_dict[ 'url'] + '/users/' + cls.USER_ID + '/snippets/' + cls.SNIPPET_ID cls.INVALID_SNIPPET_KEY = config_dict['invalid_snippet_key'] cls.INVALID_SNIPPET_URL = '%s/users/%s/snippets/%s' % ( config_dict['url'], cls.USER_ID, cls.INVALID_SNIPPET_KEY) cls.ACCESS_TOKEN = config_dict['access_token'] cls.SNIPPET = json.dumps(config_dict['snippet'])
def main(argv = None): """ main entry point """ configfile = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..", "perscon", "perscon.conf") config.parse(configfile) service = "google.com" username = config.user(service) password = keyring.get_password(service, username) gd_client = gdata.docs.service.DocsService(source='py-perscon-v01') gd_client.ClientLogin(username, password) uri = "http://localhost:5985/" Perscon_utils.init_url (uri) feed = gd_client.GetDocumentListFeed() if not feed.entry: print 'No items found.\n' for entry in feed.entry: parseObject(entry, gd_client)
def test_ok(self): v = config.parse("tests/config_ok.toml") expected = { 'database': { 'type': 'sqlite', 'sqlite': {'file': 'dbmdms.db'}, }, 'filesystem': { 'location': 'data' }, } self.assertEqual(v, expected)
def main(): args = run_argparse() configure_log(args.log) random.seed(args.seed) dir_path = pathlib.Path(args.dir) dom = domain.parse(dir_path) default_confs = config.parse(dir_path) if args.all: do_all(dom, dir_path) else: do_iter(dom, dir_path, args.iter)
def runTest(self): SunnyDayTest.runTest(self) cfg = os.path.join(ACCUMULO_HOME, 'conf', SITE) import config dir = config.parse(cfg)['instance.dfs.dir'] handle = self.runOn(self.masterHost(), [self.accumulo_sh(), 'org.apache.accumulo.core.file.rfile.PrintInfo', dir + '/tables/1/default_tablet/F0000000.rf']) out, err = handle.communicate() self.assert_(handle.returncode == 0) self.assert_(out.find('Locality group : g1') >= 0) self.assert_(out.find('families : [colf]') >= 0)
def test(): import sys import slurp from writer import Writer from config import parse parse() w, p = slurp.getBores(soilmap=config['soil']) p.dropna(inplace=True) p['rh'] = p['r']*config['buffersize'] # r horizontal # set minimum r horizontal rh_min = 1.6*config['cellsize'] p.set_value(p['rh'] < rh_min, 'rh', rh_min) adj = slurp.getGroupies(p, config['gradient'], config['buffersize']) writer = Writer('data/sampah') log = lambda message: sys.stdout.write(message) interpolator = Interpolator(p, adj, writer, log) return interpolator.interpolate()
def test_ok(self): v = config.parse("tests/config_ok.toml") expected = { 'database': { 'type': 'sqlite', 'sqlite': { 'file': 'dbmdms.db' }, }, 'filesystem': { 'location': 'data' }, } self.assertEqual(v, expected)
def runTest(self): SunnyDayTest.runTest(self) cfg = os.path.join(ACCUMULO_HOME, 'conf', SITE) import config dir = config.parse(cfg)['instance.dfs.dir'] handle = self.runOn(self.masterHost(), [ self.accumulo_sh(), 'org.apache.accumulo.core.file.rfile.PrintInfo', dir + '/tables/1/default_tablet/F0000000.rf' ]) out, err = handle.communicate() self.assert_(handle.returncode == 0) self.assert_(out.find('Locality group : g1') >= 0) self.assert_(out.find('families : [colf]') >= 0)
def generate(): confDict = config.parse("./conf.ini") parser = xml.sax.make_parser() parser.setFeature(xml.sax.handler.feature_namespaces, 0) generator = CodeGenerator.CodeGenerator(confDict["xml_path"], confDict["java_code"], confDict["java_package"]) for xmlFile in confDict["xml_files"]: xmlHandler = XmlHandler() parser.setContentHandler(xmlHandler) parser.parse(os.path.join(confDict["xml_path"], xmlFile)) dataTypes = xmlHandler.getDataTypes() if dataTypes: xmlFileName = os.path.splitext(xmlFile)[0] generator.generateEntityFile(xmlFileName, dataTypes) generator.generateConfigFile(xmlFileName) generator.generateParserFile(xmlFileName)
def main(): global loop global monitor config.parse() mod_drbd.load() if config.options.daemonize: daemonize() create_pidfile() config.show() mod_plugins.show() mod_drbd.show() mod_plugins.loadQuorum(config.quorum_plugin) mod_plugins.loadSwitcher(config.switcher_plugin) mod_plugins.loadNotifier(config.notifier_plugin) print signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) listener = mod_listener.Listener() pinger = mod_pinger.Pinger() monitor = mod_monitor.Monitor(listener, pinger) listener.setMonitor(monitor) pinger.setMonitor(monitor) monitor.start() while loop: time.sleep(.1)
def handler(eniron, start_response): prefix = eniron.get('PATH_PREFIX', None) uri = eniron['PATH_INFO'] if prefix and uri.startswith(prefix): uri = uri[len(prefix):] match = canteen_request.match(uri) if not match: start_response("404 Wrong Path", [("Content-type", 'application/xml; charset=utf-8')]) return [ '<xml version="1.0"><info>{provider}/{canteen}/{feed}.xml</info></xml>' ] request = utils.Request(eniron) try: content = parse( request, *(match.group('dirs').split('/') + [match.group('file')])) content = content.encode('utf8') start_response('200 OK', [('Content-Type', 'application/xml; charset=utf-8'), ('Content-Length', str(len(content)))]) return (content, ) except utils.Redirect as e: start_response('301 Permanent Redirect', [('Location', e.location)]) return ('', ) except utils.ParserNotFound as e: start_response('404 Parser not found', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason, ) except utils.SourceNotFound as e: start_response('404 Source not found', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason, ) except utils.FeedNotFound as e: start_response('404 Feed not found', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason, ) except utils.NotFoundError as e: start_response('404 Unknown file format', [('Content-Type', 'text/plain; charset=utf-8')]) return (e.reason, ) except Exception: traceback.print_exception(*sys.exc_info()) start_response('500 Internal Server Error', []) return ('', )
def show_people(): """ Show people is meant to serve as an auto-complete route :return: """ conn = get_conn(parse('config.yml', ingest)) logger = get_logger try: search = request.args.get('q', '') if search is '': return dumps(findAll(conn)) else: return dumps(findOneOrNone(conn, search)) except Exception as error: logger.debug(error) logger.debug(traceback.format_exc())
def runTest(self): if not os.getenv("ZOOKEEPER_HOME"): self.fail( "ZOOKEEPER_HOME environment variable is not set please set the location of ZOOKEEPER home in this environment variable" ) self.waitForStop(self.ingester, self.waitTime()) cfg = os.path.join(ACCUMULO_HOME, 'conf', SITE) import config dir = config.parse(cfg)['instance.dfs.dir'] handle = self.runOn(self.masterHost(), ["hadoop", "dfs", "-ls", dir + "/instance_id"]) out, err = handle.communicate() out = out.strip() instance_id = out.split("\n")[-1].split("/")[-1] zkcli = os.path.join(os.getenv("ZOOKEEPER_HOME"), "bin", "zkCli.sh") if not os.path.exists(zkcli): zkcli = "/usr/share/zookeeper/bin/zkCli.sh" myaddr = socket.getaddrinfo(socket.gethostname(), None)[0][-1][0] self.wait( self.runOn(self.masterHost(), [ zkcli, "-server", "localhost", "create", "-s", "/accumulo/%s/tservers/%s:%s/zlock-0" % (instance_id, myaddr, 42000), "tserver", "world:anyone:cdrw" ])) self.stop_tserver(self.masterHost(), signal=signal.SIGKILL) log.info("Making sure the tablet server is still considered online") handle = self.runClassOn( self.masterHost(), 'org.apache.accumulo.server.test.GetMasterStats', []) out, err = handle.communicate() tServer = "%s:%s" % (myaddr, 39000 + FUZZ) assert out.find(tServer) > 0 self.sleep(12) log.info("Making sure the tablet server is now offline") handle = self.runClassOn( self.masterHost(), 'org.apache.accumulo.server.test.GetMasterStats', []) out, err = handle.communicate() assert (out.find(tServer) < 0) or (out.find(tServer) > out.find('Bad servers'))
def __init__(self): help(config._config) arguments = self.parse_arguments() if arguments.print_config: print(config.print(config.default_config())) return if not arguments.config_file: print("Must specify configuration file via -c. If no configuration" + " file exists, you can generate a blank one with the -p" + " flag") return try: self.config = config.parse(arguments.config_file) except config.BadConfiguration: print("Your configuration file is invalid. To generate a new," + " blank configuration, use the -p flag.")
def setup(argdict): """Analyze argument dictionary, return (mode, args, config) where mode is a string, args is a list of strings and config is a dictionary of configuration variables with variable name as key.""" # did user request help or version info? if argdict.has_key("--help"): return ("help", None, None) if argdict.has_key("--version"): return ("version", None, None) # get config if argdict.has_key("--config-file"): config_file = argdict["--config-file"][0] else: config_file = config.DEFAULT_CONFIG_FILE configuration = None try: configuration = config.parse(config_file) except config.ConfigParseError, message: raise SetupException, "%s\n%s" % ("Error in config file %s." % config_file, "Parser said %s." % message)
def setup(argdict): '''Analyze argument dictionary, return (mode, args, config) where mode is a string, args is a list of strings and config is a dictionary of configuration variables with variable name as key.''' # did user request help or version info? if argdict.has_key('--help'): return ('help', None, None) if argdict.has_key('--version'): return ('version', None, None) # get config if argdict.has_key('--config-file'): config_file = argdict['--config-file'][0] else: config_file = config.DEFAULT_CONFIG_FILE configuration = None try: configuration = config.parse(config_file) except config.ConfigParseError, message: raise SetupException, '%s\n%s' % \ ('Error in config file %s.' % config_file, 'Parser said %s.' % message)
def compile(file, clean=False, as_name=None): ''' Cleans tmp/ directory and reinitializes with compiled skit code ''' full_file = os.path.dirname(file) + '/' base_file = os.path.basename(file) compile_file = 'tmp/' + base_file if clean: shutil.rmtree('tmp/', True) compile('default.skit') file = open(file, 'r').read() file = imports(full_file, file) skit, succeeded = config.parse(file) main_property = os.path.splitext(base_file)[0] extend(skit) if as_name: properties[as_name] = skit main_property = as_name else: properties[main_property] = skit.get(main_property) if not os.path.isdir('tmp/'): os.makedirs('tmp/') pickle.dump(skit, open(compile_file, 'wb')) return skit, succeeded
LOG_GENERIC = os.path.join(ACCUMULO_HOME, 'conf', 'generic_logger.xml') LOG_MONITOR = os.path.join(ACCUMULO_HOME, 'conf', 'monitor_logger.xml') General_CLASSPATH = ("$ACCUMULO_HOME/lib/[^.].$ACCUMULO_VERSION.jar, $ACCUMULO_HOME/lib/[^.].*.jar, $ZOOKEEPER_HOME/zookeeper[^.].*.jar," "$HADOOP_HOME/conf,$HADOOP_HOME/[^.].*.jar, $HADOOP_HOME/lib/[^.].*.jar") log = logging.getLogger('test.auto') ROOT = 'root' ROOT_PASSWORD = '******' INSTANCE_NAME=ID ZOOKEEPERS = socket.getfqdn() accumulo_site = os.path.join(ACCUMULO_HOME, 'conf', 'accumulo-site.xml') if os.path.exists(accumulo_site): import config ZOOKEEPERS = config.parse(accumulo_site).get('instance.zookeeper.host', ZOOKEEPERS) class Popen(BasePopen): def __init__(self, cmd, **args): self.cmd = cmd BasePopen.__init__(self, cmd, **args) def quote(cmd): result = [] for part in cmd: if '"' in part: result.append("'%s'" % part) else: result.append('"%s"' % part) return result
def execute(self, **kwargs): self.conf = config.parse() self.prepare_environment() self.build_infra()
def usage(): print "Usage: %s [-c <config>]" % sys.argv[0] sys.exit(2) def main(): try: opts, args = getopt.getopt( sys.argv[1:], "hsc:", ["help", "secure", "config="]) except getopt.GetoptError, err: print str(err) usage() configfile = "perscon.conf" https = False for o, a in opts: if o in ("-c", "--config"): configfile = a elif o in ("-s", "--secure"): https = True elif o in ("-h", "--help"): usage() else: usage() config.parse(configfile) db.open() port = config.port() print "Listening on port %d" % port if https: server = SecureHTTPServer(('', port), PersconHandler) else: server = HTTPServer(('', port), PersconHandler) server.serve_forever() if __name__ == '__main__': main()
def main(): #parse arguments config.parse() args = config.args for k, v in vars(args).items(): logger.info(f"{k}:{v}") #set seeds torch.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) np.random.seed(args.random_seed) random.seed(args.random_seed) #arguments check device, n_gpu = args_check(args) os.makedirs(args.output_dir, exist_ok=True) forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) args.forward_batch_size = forward_batch_size #load bert config bert_config_S = BertConfig.from_json_file(args.bert_config_file_S) assert args.max_seq_length <= bert_config_S.max_position_embeddings #Prepare GLUE task processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] # eg: MNLI,['contradiction', 'entailment', 'neutral'] --> [“矛盾”,“必然”,“中立”] label_list = processor.get_labels() num_labels = len(label_list) #read data train_dataset = None eval_datasets = None num_train_steps = None tokenizer = BertTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) # 加载数据集, 计算steps if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) if args.aux_task_name: aux_train_dataset = load_and_cache_examples(args, args.aux_task_name, tokenizer, evaluate=False, is_aux=True) train_dataset = torch.utils.data.ConcatDataset( [train_dataset, aux_train_dataset]) num_train_steps = int( len(train_dataset) / args.train_batch_size) * args.num_train_epochs if args.do_predict: eval_datasets = [] eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else ( args.task_name, ) for eval_task in eval_task_names: eval_datasets.append( load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)) logger.info("数据集已加载") #加载模型并初始化, 只用student模型,其实这里相当于在MNLI数据上训练教师模型,只训练一个模型 model_S = BertForGLUESimple(bert_config_S, num_labels=num_labels, args=args) #初始化student模型 if args.load_model_type == 'bert': assert args.init_checkpoint_S is not None state_dict_S = torch.load(args.init_checkpoint_S, map_location='cpu') if args.only_load_embedding: state_weight = { k[5:]: v for k, v in state_dict_S.items() if k.startswith('bert.embeddings') } missing_keys, _ = model_S.bert.load_state_dict(state_weight, strict=False) logger.info(f"Missing keys {list(missing_keys)}") else: state_weight = { k[5:]: v for k, v in state_dict_S.items() if k.startswith('bert.') } missing_keys, _ = model_S.bert.load_state_dict(state_weight, strict=False) assert len(missing_keys) == 0 logger.info("Model loaded") elif args.load_model_type == 'all': assert args.tuned_checkpoint_S is not None state_dict_S = torch.load(args.tuned_checkpoint_S, map_location='cpu') model_S.load_state_dict(state_dict_S) logger.info("Model loaded") else: logger.info("Model is randomly initialized.") model_S.to(device) if args.local_rank != -1 or n_gpu > 1: if args.local_rank != -1: raise NotImplementedError elif n_gpu > 1: model_S = torch.nn.DataParallel(model_S) #,output_device=n_gpu-1) if args.do_train: #parameters params = list(model_S.named_parameters()) all_trainable_params = divide_parameters(params, lr=args.learning_rate) logger.info("Length of all_trainable_params: %d", len(all_trainable_params)) # 优化器设置 optimizer = BERTAdam(all_trainable_params, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_steps, schedule=args.schedule, s_opt1=args.s_opt1, s_opt2=args.s_opt2, s_opt3=args.s_opt3) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Forward batch size = %d", forward_batch_size) logger.info(" Num backward steps = %d", num_train_steps) ########### 蒸馏 ########### train_config = TrainingConfig( gradient_accumulation_steps=args.gradient_accumulation_steps, ckpt_frequency=args.ckpt_frequency, log_dir=args.output_dir, output_dir=args.output_dir, device=args.device) #执行监督训练,而不是蒸馏。它可以用于训练teacher模型。初始化模型 distiller = BasicTrainer(train_config=train_config, model=model_S, adaptor=BertForGLUESimpleAdaptorTraining) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: raise NotImplementedError train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.forward_batch_size, drop_last=True) callback_func = partial(predict, eval_datasets=eval_datasets, args=args) with distiller: distiller.train(optimizer, scheduler=None, dataloader=train_dataloader, num_epochs=args.num_train_epochs, callback=callback_func) if not args.do_train and args.do_predict: res = predict(model_S, eval_datasets, step=0, args=args) print(res)
import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import optimizer import os import numpy as np import time import datetime import path import shutil import config args = config.parse() # gpu, seed torch.manual_seed(args.seed) np.random.seed(args.seed) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) os.environ['PYTHONHASHSEED'] = str(args.seed) use_norm = 'use-norm' if args.use_norm else 'no-norm' add_self_loop = 'add-self-loop' if args.add_self_loop else 'no-self-loop' #### configure output directory dataname = f'{args.data}_{args.dataset}' model_name = args.model_name
def main(): #parse arguments config.parse() args = config.args for k, v in vars(args).items(): logger.info(f"{k}:{v}") #set seeds torch.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) np.random.seed(args.random_seed) random.seed(args.random_seed) #arguments check device, n_gpu = args_check(args) os.makedirs(args.output_dir, exist_ok=True) forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) args.forward_batch_size = forward_batch_size #load bert config bert_config_S = BertConfig.from_json_file(args.bert_config_file_S) assert args.max_seq_length <= bert_config_S.max_position_embeddings #read data train_examples = None train_features = None eval_examples = None eval_features = None num_train_steps = None tokenizer = ChineseFullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) convert_fn = partial(convert_examples_to_features, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length) if args.do_train: train_examples, train_features = read_and_convert( args.train_file, is_training=True, do_lower_case=args.do_lower_case, read_fn=read_squad_examples, convert_fn=convert_fn) if args.fake_file_1: fake_examples1, fake_features1 = read_and_convert( args.fake_file_1, is_training=True, do_lower_case=args.do_lower_case, read_fn=read_squad_examples, convert_fn=convert_fn) train_examples += fake_examples1 train_features += fake_features1 if args.fake_file_2: fake_examples2, fake_features2 = read_and_convert( args.fake_file_2, is_training=True, do_lower_case=args.do_lower_case, read_fn=read_squad_examples, convert_fn=convert_fn) train_examples += fake_examples2 train_features += fake_features2 num_train_steps = int(len(train_features) / args.train_batch_size) * args.num_train_epochs if args.do_predict: eval_examples, eval_features = read_and_convert( args.predict_file, is_training=False, do_lower_case=args.do_lower_case, read_fn=read_squad_examples, convert_fn=convert_fn) #Build Model and load checkpoint model_S = BertForQASimple(bert_config_S, args) #Load student if args.load_model_type == 'bert': assert args.init_checkpoint_S is not None state_dict_S = torch.load(args.init_checkpoint_S, map_location='cpu') state_weight = { k[5:]: v for k, v in state_dict_S.items() if k.startswith('bert.') } missing_keys, _ = model_S.bert.load_state_dict(state_weight, strict=False) assert len(missing_keys) == 0 elif args.load_model_type == 'all': assert args.tuned_checkpoint_S is not None state_dict_S = torch.load(args.tuned_checkpoint_S, map_location='cpu') model_S.load_state_dict(state_dict_S) else: logger.info("Model is randomly initialized.") model_S.to(device) if args.local_rank != -1 or n_gpu > 1: if args.local_rank != -1: raise NotImplementedError elif n_gpu > 1: model_S = torch.nn.DataParallel(model_S) #,output_device=n_gpu-1) if args.do_train: #parameters params = list(model_S.named_parameters()) all_trainable_params = divide_parameters(params, lr=args.learning_rate) logger.info("Length of all_trainable_params: %d", len(all_trainable_params)) optimizer = BERTAdam(all_trainable_params, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_steps, schedule=args.schedule, s_opt1=args.s_opt1, s_opt2=args.s_opt2, s_opt3=args.s_opt3) logger.info("***** Running training *****") logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Forward batch size = %d", forward_batch_size) logger.info(" Num backward steps = %d", num_train_steps) ########### DISTILLATION ########### train_config = TrainingConfig( gradient_accumulation_steps=args.gradient_accumulation_steps, ckpt_frequency=args.ckpt_frequency, log_dir=args.output_dir, output_dir=args.output_dir, device=args.device) distiller = BasicTrainer(train_config=train_config, model=model_S, adaptor=BertForQASimpleAdaptorTraining) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_doc_mask = torch.tensor([f.doc_mask for f in train_features], dtype=torch.float) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_start_positions = torch.tensor( [f.start_position for f in train_features], dtype=torch.long) all_end_positions = torch.tensor( [f.end_position for f in train_features], dtype=torch.long) train_dataset = TensorDataset(all_input_ids, all_segment_ids, all_input_mask, all_doc_mask, all_start_positions, all_end_positions) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: raise NotImplementedError train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.forward_batch_size, drop_last=True) callback_func = partial(predict, eval_examples=eval_examples, eval_features=eval_features, args=args) with distiller: distiller.train(optimizer, scheduler=None, dataloader=train_dataloader, num_epochs=args.num_train_epochs, callback=callback_func) if not args.do_train and args.do_predict: res = predict(model_S, eval_examples, eval_features, step=0, args=args) print(res)
def main(): #parse arguments config.parse() args = config.args for k, v in vars(args).items(): logger.info(f"{k}:{v}") #set seeds torch.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) np.random.seed(args.random_seed) random.seed(args.random_seed) #arguments check device, n_gpu = args_check(args) os.makedirs(args.output_dir, exist_ok=True) forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) args.forward_batch_size = forward_batch_size #load bert config bert_config_T = BertConfig.from_json_file(args.bert_config_file_T) bert_config_S = BertConfig.from_json_file(args.bert_config_file_S) assert args.max_seq_length <= bert_config_T.max_position_embeddings assert args.max_seq_length <= bert_config_S.max_position_embeddings #Prepare GLUE task processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) #read data train_dataset = None eval_datasets = None num_train_steps = None tokenizer = BertTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) # 加载数据集 if args.do_train: train_dataset, examples = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) if args.aux_task_name: aux_train_dataset, examples = load_and_cache_examples( args, args.aux_task_name, tokenizer, evaluate=False, is_aux=True) train_dataset = torch.utils.data.ConcatDataset( [train_dataset, aux_train_dataset]) num_train_steps = int( len(train_dataset) / args.train_batch_size) * args.num_train_epochs if args.do_predict: eval_datasets = [] eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else ( args.task_name, ) for eval_task in eval_task_names: eval_dataset, examples = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) eval_datasets.append(eval_dataset) logger.info("数据集加载成功") #加载模型,加载teacher和student模型 model_T = BertForGLUESimple(bert_config_T, num_labels=num_labels, args=args) model_S = BertForGLUESimple(bert_config_S, num_labels=num_labels, args=args) #加载teacher模型参数 if args.tuned_checkpoint_T is not None: state_dict_T = torch.load(args.tuned_checkpoint_T, map_location='cpu') model_T.load_state_dict(state_dict_T) model_T.eval() else: assert args.do_predict is True #Load student if args.load_model_type == 'bert': assert args.init_checkpoint_S is not None state_dict_S = torch.load(args.init_checkpoint_S, map_location='cpu') if args.only_load_embedding: state_weight = { k[5:]: v for k, v in state_dict_S.items() if k.startswith('bert.embeddings') } missing_keys, _ = model_S.bert.load_state_dict(state_weight, strict=False) logger.info(f"Missing keys {list(missing_keys)}") else: state_weight = { k[5:]: v for k, v in state_dict_S.items() if k.startswith('bert.') } missing_keys, _ = model_S.bert.load_state_dict(state_weight, strict=False) assert len(missing_keys) == 0 logger.info("Model loaded") elif args.load_model_type == 'all': assert args.tuned_checkpoint_S is not None state_dict_S = torch.load(args.tuned_checkpoint_S, map_location='cpu') model_S.load_state_dict(state_dict_S) logger.info("Model loaded") else: logger.info("Student模型没有可加载参数,随机初始化参数 randomly initialized.") model_T.to(device) model_S.to(device) if args.local_rank != -1 or n_gpu > 1: if args.local_rank != -1: raise NotImplementedError elif n_gpu > 1: model_T = torch.nn.DataParallel(model_T) #,output_device=n_gpu-1) model_S = torch.nn.DataParallel(model_S) #,output_device=n_gpu-1) if args.do_train: #parameters params = list(model_S.named_parameters()) all_trainable_params = divide_parameters(params, lr=args.learning_rate) logger.info("Length of all_trainable_params: %d", len(all_trainable_params)) #优化器配置 optimizer = BERTAdam(all_trainable_params, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_steps, schedule=args.schedule, s_opt1=args.s_opt1, s_opt2=args.s_opt2, s_opt3=args.s_opt3) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Forward batch size = %d", forward_batch_size) logger.info(" Num backward steps = %d", num_train_steps) ########### DISTILLATION ########### train_config = TrainingConfig( gradient_accumulation_steps=args.gradient_accumulation_steps, ckpt_frequency=args.ckpt_frequency, log_dir=args.output_dir, output_dir=args.output_dir, device=args.device) # 定义了一些固定的matches配置文件 from matches import matches intermediate_matches = None if isinstance(args.matches, (list, tuple)): intermediate_matches = [] for match in args.matches: intermediate_matches += matches[match] logger.info(f"中间层match信息: {intermediate_matches}") distill_config = DistillationConfig( temperature=args.temperature, intermediate_matches=intermediate_matches) logger.info(f"训练配置: {train_config}") logger.info(f"蒸馏配置: {distill_config}") adaptor_T = partial(BertForGLUESimpleAdaptor, no_logits=args.no_logits, no_mask=args.no_inputs_mask) adaptor_S = partial(BertForGLUESimpleAdaptor, no_logits=args.no_logits, no_mask=args.no_inputs_mask) # 支持中间状态匹配的通用蒸馏模型 distiller = GeneralDistiller(train_config=train_config, distill_config=distill_config, model_T=model_T, model_S=model_S, adaptor_T=adaptor_T, adaptor_S=adaptor_S) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: raise NotImplementedError train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.forward_batch_size, drop_last=True) callback_func = partial(predict, eval_datasets=eval_datasets, args=args, examples=examples) with distiller: distiller.train(optimizer, scheduler=None, dataloader=train_dataloader, num_epochs=args.num_train_epochs, callback=callback_func) if not args.do_train and args.do_predict: res = predict(model_S, eval_datasets, step=0, args=args, examples=examples, label_list=label_list) print(res)
# Specifies where to find all the card images for each set. self.card_sets = [CardSet(name, find_cards(folder), enabled) for name, (folder, enabled) in kwargs['card_sets'].iteritems()] super(Application, self).__init__(*args, **kwargs) settings = { 'static_path' : os.path.join(os.path.dirname(__file__), 'static'), 'template_path' : os.path.join(os.path.dirname(__file__), 'templates'), 'debug' : True, } configFilename = (sys.argv + ['config.json'])[1] settings.update(config.parse(configFilename)) application = Application([ (r'/', MainHandler), (r'/main.js', MainJSHandler), (r'/main.css', MainCSSHandler), (r'/setusername', SetUsernameHandler), (r'/create', CreateHandler), (r'/getgames', GetGamesHandler), (r'/getusers', GetUsersHandler), (r'/game/([0-9]+)/(.+)', GameHandler), (r'/chat', ChatHandler), ], **settings) if __name__ == "__main__":
def __init__(self, *args, **kwargs): self.cfg = config.parse(CONFIG) super(InstallerServerApp, self).__init__(*args, **kwargs)
def main(): usage = 'usage: %prog [options] [pagename ...]' version = '%%prog %s (%s)' % (__version__, __date__) optparser = OptionParser(usage=usage, version=version) optparser.add_option('-m', '--make', action='store_true', help='build modified pages') optparser.add_option('-b', '--build', action='store_true', help='build all pages') optparser.add_option('-c', '--clean', action='store_true', help='remove html files') optparser.add_option('-s', '--synchronize', action='store_true', help='upload modified files to the FTP ' 'server; wiki files are not uploded; subdirectories *ARE* uploaded; requires ftputil library; FTP ' 'has to be configured using the config file; this switch can be combined with any of the above ' 'three') optparser.add_option('-f', '--force', action='store_true', help='when used together with --synchronize, ' 'causes the files and directories that does not exist locally to be deleted from the FTP server') optparser.add_option('-d', '--directory', dest='dir', help='wiki directory, defaults to current directory', default='.') optparser.add_option('-g', '--config', help='name of the config file relative to the wiki directory, ' 'defaults to _statwiki.config', default='_statwiki.config') options, args = optparser.parse_args() a = [name for name, value in options.__dict__.items() if name in ('make', 'build', 'clean') and value] if len(a) > 1: sys.exit('error: only one of --make, --build and --clean switches can be used at once') try: mode = a[0] except IndexError: if options.synchronize: # if only --synchronize was specified, do nothing besides syncing mode = 'idle' else: sys.exit('error: one of the --make, --build, --clean or --synchronize switches must ' 'be specified; use --help for more information') os.chdir(options.dir) config.parse(wikiutil.fixFileNameCase(options.config)) if args: # Add .wiki to the names if needed. wikipages = [] for name in args: if not name.endswith('.wiki'): name = wikiutil.pageName2inputFile(name) wikipages.append(wikiutil.fixFileNameCase(name)) else: wikipages = [x for x in os.listdir('.') if x.endswith('.wiki') and not x.startswith('_')] if mode == 'clean': print 'Cleaning...' for filename in wikipages: pagename = wikiutil.inputFile2pageName(filename) try: os.unlink(wikiutil.pageName2outputFile(pagename)) print wikiutil.pageName2outputFile(pagename) except OSError: pass elif mode == 'make': print 'Making...' todo = [] for filename in wikipages: ofilename = wikiutil.inputFile2outputFile(filename) if not os.path.exists(ofilename) or \ os.path.getmtime(ofilename) < os.path.getmtime(filename): todo.append(filename) process(todo) elif mode == 'build': print 'Building...' process(wikipages) if options.synchronize: print 'Synchronizing with %s...' % getattr(config.ftp, 'host', '???') try: host = config.ftp.host except AttributeError: sys.exit('cannot synchronize, configure the FTP server access first') # Import ftpsync only if --synchronize was specified so that ftputil doesn't have to be # installed if this option is not used. from ftpsync import synchronize synchronize(options.force) elif options.force: sys.exit('error: --force can only be used together with --synchronize')
pp = pd.concat((p, sp)) pp.sort_values(['x','y'], inplace=True) # log(pp.head().to_string()) # log('\n') # log(pp.tail().to_string()) log('Pre-processing... ') pp.drop(pp[pp.r < config.config['min_height']].index, inplace=True) pp.drop(pp[pp.r > config.config['max_height']].index, inplace=True) rh_min = 1.6*config.config['cellsize'] pp.loc[pp.rh < rh_min, 'rh'] = rh_min adj = get_groupies(pp, grad=config.config['gradient']) log('Done\n') return pp, adj if __name__ == "__main__": from interpolator import Interpolator from writer import Writer import config config.parse() if len(sys.argv) > 1: df, adj = prep(fbore=sys.argv[1], fscreen=sys.argv[2], config=config) w = Writer(sys.argv[3]) i = Interpolator(df, adj, w) i.interpolate() else: df, adj = prep(config=config) i = Interpolator(df, adj) i.interpolate()
def main(): global Verbose ## mort: this config stuff is a bit grim - really need a proper ## plugin interface configfile = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..", "perscon", "perscon.conf") config.parse(configfile) uri = "http://localhost:%d/" % (config.port(),) Perscon_utils.init_url(uri) service = "twitter.com" username, password = Perscon_utils.get_credentials(service) ## mort: also note that by using Basic authentication the ## username/password pair are essentially being passed in the clear t = twitter.Twitter(username, password) ## 1. tweets mentioning us tsearch = twitter.Twitter(username, password, domain="search.twitter.com") pg = 1 while True: rs = retryOnError("search pg=%d" % pg, lambda: tsearch.search(rpp=90, page=pg, q=username)) if len(rs['results']) == 0: break stash_tweets(service, username, rs['results']) pg += 1 ## 2. our own tweets pg = 1 while True: rs = retryOnError("own_tweets %d" % (pg,), lambda: t.statuses.user_timeline(page=pg, count=200)) if len(rs) == 0: break stash_tweets(service, username, rs) pg += 1 ## 3. our own retweets (stupid api - not included in above) pg = 1 Verbose = True while True: rs = retryOnError("own_retweets %d" % (pg,), lambda: t.statuses.retweeted_by_me(page=pg, count=200)) if len(rs) == 0: break stash_tweets(service, username, rs) pg += 1 ## 4. direct messages we sent pg = 1 while True: rs = retryOnError("direct_messages_sent %d" % (pg,), lambda: t.direct_messages.sent(page=pg, count=200)) if len(rs) == 0: break stash_tweets(service, username, rs) pg += 1 ## 5. direct messages we received pg = 1 while True: rs = retryOnError("direct_messages_received %d" % (pg,), lambda: t.direct_messages(page=pg, count=200)) if len(rs) == 0: break stash_tweets(service, username, rs) pg += 1 ## 6. tweets from friends cr = -1 friends = [] while cr != 0: rs = retryOnError("get_friends cursor=%d" % cr, lambda: t.friends.ids(cursor=cr)) friends.extend(rs['ids']) cr = rs['next_cursor'] print >> sys.stderr, "friends:", friends for friend in friends: pg = 1 while True: rs = retryOnError( "friend_timeline %s %d" % (friend, pg), lambda: t.statuses.user_timeline(id=friend, page=pg, count=200)) if len(rs) == 0: break stash_tweets(service, username, rs) pg += 1 print >> sys.stderr, "friend: %s done" % friend
def get_dbfs(): configuration = config.parse('config.toml') db = database.get_instance(configuration) fs = filesystem.get_instance(configuration) return (db, fs)
# Specifies where to find all the card images for each set. self.card_sets = [CardSet(name, find_cards(folder), enabled) for name, (folder, enabled) in kwargs['card_sets'].iteritems()] self.admin_password = kwargs['admin_password'] super(Application, self).__init__(*args, **kwargs) settings = { 'static_path' : os.path.join(os.path.dirname(__file__), 'static'), 'template_path' : os.path.join(os.path.dirname(__file__), 'templates'), 'debug' : True, } configFilename = (sys.argv + ['config.json'])[1] settings.update(config.parse(configFilename)) application = Application([ (r'/', MainHandler), (r'/admin', AdminHandler), (r'/main.js', MainJSHandler), (r'/main.css', MainCSSHandler), (r'/setusername', SetUsernameHandler), (r'/create', CreateHandler), (r'/getgames', GetGamesHandler), (r'/getusers', GetUsersHandler), (r'/game/([0-9]+)/(.+)', GameHandler), (r'/chat', ChatHandler), ], **settings) if __name__ == "__main__":
import renderer import facial_feature_detector as feature_detection import camera_calibration as calib import scipy.io as io import cv2 import numpy as np import os import check_resources as check import matplotlib.pyplot as plt import sys import myutil import ThreeD_Model import config this_path = os.path.dirname(os.path.abspath(__file__)) opts = config.parse() ## 3D Models we are gonna use to to the rendering {0, -40, -75} newModels = opts.getboolean('renderer', 'newRenderedViews') if opts.getboolean('renderer', 'newRenderedViews'): pose_models_folder = '/models3d_new/' pose_models = [ 'model3D_aug_-00_00', 'model3D_aug_-22_00', 'model3D_aug_-40_00', 'model3D_aug_-55_00', 'model3D_aug_-75_00' ] else: pose_models_folder = '/models3d/' pose_models = [ 'model3D_aug_-00', 'model3D_aug_-40', 'model3D_aug_-75', ]
import os import sys import inferer from config import parse os.environ['CUDA_VISIBLE_DEVICES']='1' config_path = './param_config.yml' config = parse(config_path) inferer = inferer.Inferer(config) inferer()
def main(): #parse arguments config.parse() args = config.args for k, v in vars(args).items(): logger.info(f"{k}:{v}") #set seeds torch.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) np.random.seed(args.random_seed) random.seed(args.random_seed) #arguments check device, n_gpu = args_check(args) os.makedirs(args.output_dir, exist_ok=True) forward_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) args.forward_batch_size = forward_batch_size #load config teachers_and_student = parse_model_config(args.model_config_json) #Prepare GLUE task processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) #read data train_dataset = None eval_datasets = None num_train_steps = None tokenizer_S = teachers_and_student['student']['tokenizer'] prefix_S = teachers_and_student['student']['prefix'] if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer_S, prefix=prefix_S, evaluate=False) if args.do_predict: eval_datasets = [] eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else ( args.task_name, ) for eval_task in eval_task_names: eval_datasets.append( load_and_cache_examples(args, eval_task, tokenizer_S, prefix=prefix_S, evaluate=True)) logger.info("Data loaded") #Build Model and load checkpoint if args.do_train: model_Ts = [] for teacher in teachers_and_student['teachers']: model_type_T = teacher['model_type'] model_config_T = teacher['config'] checkpoint_T = teacher['checkpoint'] _, _, model_class_T = MODEL_CLASSES[model_type_T] model_T = model_class_T(model_config_T, num_labels=num_labels) state_dict_T = torch.load(checkpoint_T, map_location='cpu') missing_keys, un_keys = model_T.load_state_dict(state_dict_T, strict=True) logger.info(f"Teacher Model {model_type_T} loaded") model_T.to(device) model_T.eval() model_Ts.append(model_T) student = teachers_and_student['student'] model_type_S = student['model_type'] model_config_S = student['config'] checkpoint_S = student['checkpoint'] _, _, model_class_S = MODEL_CLASSES[model_type_S] model_S = model_class_S(model_config_S, num_labels=num_labels) if checkpoint_S is not None: state_dict_S = torch.load(checkpoint_S, map_location='cpu') missing_keys, un_keys = model_S.load_state_dict(state_dict_S, strict=False) logger.info(f"missing keys:{missing_keys}") logger.info(f"unexpected keys:{un_keys}") else: logger.warning("Initializing student randomly") logger.info("Student Model loaded") model_S.to(device) if args.local_rank != -1 or n_gpu > 1: if args.local_rank != -1: raise NotImplementedError elif n_gpu > 1: if args.do_train: model_Ts = [ torch.nn.DataParallel(model_T) for model_T in model_Ts ] model_S = torch.nn.DataParallel(model_S) #,output_device=n_gpu-1) if args.do_train: #parameters params = list(model_S.named_parameters()) all_trainable_params = divide_parameters(params, lr=args.learning_rate) logger.info("Length of all_trainable_params: %d", len(all_trainable_params)) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: raise NotImplementedError train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.forward_batch_size, drop_last=True) num_train_steps = int( len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs) ########## DISTILLATION ########### train_config = TrainingConfig( gradient_accumulation_steps=args.gradient_accumulation_steps, ckpt_frequency=args.ckpt_frequency, log_dir=args.output_dir, output_dir=args.output_dir, fp16=args.fp16, device=args.device) distill_config = DistillationConfig(temperature=args.temperature, kd_loss_type='ce') logger.info(f"{train_config}") logger.info(f"{distill_config}") adaptor_T = BertForGLUESimpleAdaptor adaptor_S = BertForGLUESimpleAdaptor distiller = MultiTeacherDistiller(train_config=train_config, distill_config=distill_config, model_T=model_Ts, model_S=model_S, adaptor_T=adaptor_T, adaptor_S=adaptor_S) optimizer = AdamW(all_trainable_params, lr=args.learning_rate) scheduler_class = get_linear_schedule_with_warmup scheduler_args = { 'num_warmup_steps': int(args.warmup_proportion * num_train_steps), 'num_training_steps': num_train_steps } logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Forward batch size = %d", forward_batch_size) logger.info(" Num backward steps = %d", num_train_steps) callback_func = partial(predict, eval_datasets=eval_datasets, args=args) with distiller: distiller.train(optimizer, scheduler_class=scheduler_class, scheduler_args=scheduler_args, dataloader=train_dataloader, num_epochs=args.num_train_epochs, callback=callback_func, max_grad_norm=1) if not args.do_train and args.do_predict: res = predict(model_S, eval_datasets, step=0, args=args) print(res)
def main(): parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('-c', dest='config') args = parser.parse_args() config.parse(args.config) train()
import io_routines import output import convert def main(info): for i in range(info.ntimes): raw_data = io_routines.load_data(info.times[i], info) processed_data = convert.era2icar(raw_data) output.write_file(info.times[i], info, processed_data) if __name__ == '__main__': try: info = config.parse() config.update_info(info) exit_code = main(info) if exit_code is None: exit_code = 0 sys.exit(exit_code) except KeyboardInterrupt as e: # Ctrl-C raise e except SystemExit as e: # sys.exit() raise e except Exception as e: print('ERROR, UNEXPECTED EXCEPTION') print(str(e)) traceback.print_exc() os._exit(1)
#!/usr/bin/env python import sys sys.path.append('scripts') sys.path.append('scripts/core_common') sys.path.append('scripts/core_common/modules') import config import base import build import build_js import build_server import deploy import make_common # parse configuration config.parse() base_dir = base.get_script_dir(__file__) base.set_env("BUILD_PLATFORM", config.option("platform")) # branding if ("1" != base.get_env("OO_RUNNING_BRANDING")) and ( "" != config.option("branding")): branding_dir = base_dir + "/../" + config.option("branding") if ("1" == config.option("update")): is_exist = True if not base.is_dir(branding_dir): is_exist = False base.cmd( "git",
#!python3 import sys from config import parse from utils import Request, NotFoundError class SimulatedRequest(Request): def __init__(self): self.host = 'http://example.org' try: print(parse(SimulatedRequest(), *sys.argv[1:])) except NotFoundError as e: print(e) sys.exit(2)
import config import io_routines import output import convert def main(info): for i in range(info.ntimes): raw_data=io_routines.load_data(info.times[i],info) processed_data=convert.era2icar(raw_data) output.write_file(info.times[i],info,processed_data) if __name__ == '__main__': try: info=config.parse() config.update_info(info) exit_code = main(info) if exit_code is None: exit_code = 0 sys.exit(exit_code) except KeyboardInterrupt, e: # Ctrl-C raise e except SystemExit, e: # sys.exit() raise e except Exception, e: print('ERROR, UNEXPECTED EXCEPTION') print(str(e)) traceback.print_exc() os._exit(1)
from flask import Flask, make_response, request from config import parse from glue import expose_as_api from leagues import Leagues import os from pymongo import MongoClient, version from json import dumps config = parse('config.yml') mongo = MongoClient(os.environ['DB_PORT_27017_TCP_ADDR'], 27017).dota2league_tracker app = Flask(__name__) #TODO: add more depth here @app.route('/health') def get_health(): return "Ok" @app.route('/config') def get_config(): return dumps(config) leagues = Leagues(mongo) expose_as_api(app, leagues, '/leagues') from matches import process_leagues_in_background, process_matches_in_background, Matches matches = Matches(mongo)
SITE = "test-" + ID WALOG = os.path.join(ACCUMULO_HOME, 'walogs', ID) General_CLASSPATH = "$ACCUMULO_HOME/lib/[^.].$ACCUMULO_VERSION.jar, $ACCUMULO_HOME/lib/[^.].*.jar, $ZOOKEEPER_HOME/zookeeper[^.].*.jar, $HADOOP_HOME/conf,$HADOOP_HOME/[^.].*.jar, $HADOOP_HOME/lib/[^.].*.jar" log = logging.getLogger('test.auto') ROOT = 'root' ROOT_PASSWORD = '******' INSTANCE_NAME = ID ZOOKEEPERS = socket.getfqdn() accumulo_site = os.path.join(ACCUMULO_HOME, 'conf', 'accumulo-site.xml') if os.path.exists(accumulo_site): import config ZOOKEEPERS = config.parse(accumulo_site).get('instance.zookeeper.host', ZOOKEEPERS) class Popen(BasePopen): def __init__(self, cmd, **args): self.cmd = cmd BasePopen.__init__(self, cmd, **args) def quote(cmd): result = [] for part in cmd: if '"' in part: result.append("'%s'" % part) else: result.append('"%s"' % part)
import config import update # Reading common options from env: MODE_DIR = os.getenv("MODE_DIR") COMPILER = os.getenv("COMPILER") LOGGER = os.getenv("LOGGER") # Reading user's code options from env USER = os.getenv("USER") SUBID = os.getenv("SUBID") PROBLEM = os.getenv("PROBLEM") LANGUAGE = os.getenv('LANGUAGE') # Reading problem specific options from problem config CONFIG = config.parse() # Initializing log prefix = SUBID + ':' + USER + ':' + PROBLEM + ':' + LANGUAGE + ': ' logmsg = '' # Start compiling update.status ('COMPILE', SUBID, -1) compret = os.system (COMPILER + ' ' + LANGUAGE) compret /= 256 update.status ('COMPILE', SUBID, compret) if compret == 124: # Compile time limit exceeded, refer to Gnu timeout manual logmsg = 'Compile time limit exceeded' elif compret: # Unspecified Compilation error
DBusGMainLoop(set_as_default=True) parser = OptionParser() parser.add_option("-d", "--debug", action="store_true", default=False, help="enable debugging") parser.add_option("-c", "--config", default=None, help="configuration file to read") (options, args) = parser.parse_args() if options.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.WARNING) logger = logging.getLogger("shackleton") try: contexts = config.parse(options.config) except IOError, e: logger.warning(str(e)) sys.exit(1) current_contexts = set() for c in contexts.itervalues(): def changed(context): logger.debug("Context %s changed" % context) # TODO: wrap in try/except if context.evaluateRules(): if context not in current_contexts: current_contexts.add(context) notify.enter(context) context.runEnteringActions()