def main(): opt = OptInit().get_args() logging.info('===> Creating dataloader ...') train_dataset = GeoData.S3DIS(opt.data_dir, opt.area, True, pre_transform=T.NormalizeScale()) train_loader = DenseDataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=4) test_dataset = GeoData.S3DIS(opt.data_dir, opt.area, train=False, pre_transform=T.NormalizeScale()) test_loader = DenseDataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=0) opt.n_classes = train_loader.dataset.num_classes logging.info('===> Loading the network ...') model = DenseDeepGCN(opt).to(opt.device) if opt.multi_gpus: model = DataParallel(DenseDeepGCN(opt)).to(opt.device) logging.info('===> loading pre-trained ...') model, opt.best_value, opt.epoch = load_pretrained_models( model, opt.pretrained_model, opt.phase) logging.info(model) logging.info('===> Init the optimizer ...') criterion = torch.nn.CrossEntropyLoss().to(opt.device) optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_adjust_freq, opt.lr_decay_rate) optimizer, scheduler, opt.lr = load_pretrained_optimizer( opt.pretrained_model, optimizer, scheduler, opt.lr) logging.info('===> Init Metric ...') opt.losses = AverageMeter() opt.test_value = 0. logging.info('===> start training ...') for _ in range(opt.epoch, opt.total_epochs): opt.epoch += 1 logging.info('Epoch:{}'.format(opt.epoch)) train(model, train_loader, optimizer, scheduler, criterion, opt) if opt.epoch % opt.eval_freq == 0 and opt.eval_freq != -1: test(model, test_loader, opt) scheduler.step() logging.info('Saving the final model.Finish!')
def main(): opt = OptInit().get_args() logging.info('===> Creating dataloader...') test_dataset = GeoData.S3DIS(opt.data_dir, opt.area, train=False, pre_transform=T.NormalizeScale()) test_loader = DenseDataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=0) opt.n_classes = test_loader.dataset.num_classes if opt.no_clutter: opt.n_classes -= 1 logging.info('===> Loading the network ...') model = DenseDeepGCN(opt).to(opt.device) model, opt.best_value, opt.epoch = load_pretrained_models( model, opt.pretrained_model, opt.phase) logging.info('===> Start Evaluation ...') test(model, test_loader, opt)
filename = '{}/{}_model.pth'.format(opt.ckpt_dir, opt.jobname + '-' + name_post) model_cpu = {k: v.cpu() for k, v in model.state_dict().items()} state = { 'epoch': opt.epoch, 'state_dict': model_cpu, 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'best_value': opt.best_value, } torch.save(state, filename) logging.info('save a new best model into {}'.format(filename)) if __name__ == '__main__': opt = OptInit()._get_args() logging.info('===> Creating dataloader ...') train_dataset = PartNet(opt.data_dir, 'sem_seg_h5', opt.category, opt.level, 'train') train_loader = DenseDataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=8) test_dataset = PartNet(opt.data_dir, 'sem_seg_h5', opt.category, opt.level, 'test') test_loader = DenseDataLoader(test_dataset, batch_size=opt.test_batch_size, shuffle=False, num_workers=8)
def main(): opt = OptInit().get_args() logging.info('===> Creating dataloader ...') train_dataset = GeoData.S3DIS(opt.data_dir, opt.area, True, pre_transform=T.NormalizeScale()) train_loader = DenseDataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=4) test_dataset = GeoData.S3DIS(opt.data_dir, opt.area, train=False, pre_transform=T.NormalizeScale()) test_loader = DenseDataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=0) opt.n_classes = train_loader.dataset.num_classes logging.info('===> Loading the network ...') model = DenseDeepGCN(opt).to(opt.device) if opt.multi_gpus: model = DataParallel(DenseDeepGCN(opt)).to(opt.device) logging.info('===> loading pre-trained ...') model, opt.best_value, opt.epoch = load_pretrained_models( model, opt.pretrained_model, opt.phase) logging.info(model) logging.info('===> Init the optimizer ...') criterion = torch.nn.CrossEntropyLoss().to(opt.device) optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, opt.lr_adjust_freq, opt.lr_decay_rate) optimizer, scheduler, opt.lr = load_pretrained_optimizer( opt.pretrained_model, optimizer, scheduler, opt.lr) logging.info('===> Init Metric ...') opt.losses = AverageMeter() opt.test_value = 0. logging.info('===> start training ...') for _ in range(opt.epoch, opt.total_epochs): opt.epoch += 1 logging.info('Epoch:{}'.format(opt.epoch)) train(model, train_loader, optimizer, criterion, opt) if opt.epoch % opt.eval_freq == 0 and opt.eval_freq != -1: test(model, test_loader, opt) scheduler.step() # ------------------ save checkpoints # min or max. based on the metrics is_best = (opt.test_value < opt.best_value) opt.best_value = max(opt.test_value, opt.best_value) model_cpu = {k: v.cpu() for k, v in model.state_dict().items()} save_checkpoint( { 'epoch': opt.epoch, 'state_dict': model_cpu, 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'best_value': opt.best_value, }, is_best, opt.ckpt_dir, opt.exp_name) # ------------------ tensorboard log info = { 'loss': opt.losses.avg, 'test_value': opt.test_value, 'lr': scheduler.get_lr()[0] } opt.writer.add_scalars('epoch', info, opt.iter) logging.info('Saving the final model.Finish!')
cur_shape_iou_tot += I/U cur_shape_iou_cnt += 1. if cur_shape_iou_cnt > 0: cur_shape_miou = cur_shape_iou_tot / cur_shape_iou_cnt shape_iou_tot += cur_shape_miou shape_iou_cnt += 1. shape_mIoU = shape_iou_tot / shape_iou_cnt part_iou = np.divide(part_intersect[1:], part_union[1:]) mean_part_iou = np.mean(part_iou) logging.info("===> Finish Testing! Category {}-{}, Part mIOU is {:.4f} \n\n\n ".format( opt.category_no, opt.category, mean_part_iou)) if __name__ == '__main__': opt = OptInit()._get_args() logging.info('===> Creating dataloader ...') test_dataset = PartNet(opt.data_dir, 'sem_seg_h5', opt.category, opt.level, 'test') test_loader = DenseDataLoader(test_dataset, batch_size=1, shuffle=True, num_workers=1) opt.n_classes = test_loader.dataset.num_classes logging.info('===> Loading the network ...') model = DeepGCN(opt).to(opt.device) logging.info('===> loading pre-trained ...') model, opt.best_value, opt.epoch = load_pretrained_models(model, opt.pretrained_model, opt.phase) test(model, test_loader, opt)
filename = '{}/{}_model.pth'.format(opt.ckpt_dir, opt.jobname + '-' + name_post) model_cpu = {k: v.cpu() for k, v in model.state_dict().items()} state = { 'epoch': opt.epoch, 'state_dict': model_cpu, 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'best_value': opt.best_value, } torch.save(state, filename) logging.info('save a new best model into {}'.format(filename)) if __name__ == '__main__': opt = OptInit()._get_args() logging.info('===> Creating dataloader ...') train_loader = DataLoader(ModelNet40(data_dir=opt.data_dir, partition='train', num_points=opt.num_points), num_workers=8, batch_size=opt.batch_size, shuffle=True, drop_last=True) test_loader = DataLoader(ModelNet40(data_dir=opt.data_dir, partition='test', num_points=opt.num_points), num_workers=8, batch_size=opt.test_batch_size, shuffle=True,