Example #1
0
def do_copula_4_scheme(scheme_id):
    """
    根据 scheme_id 计算相关组合的 copula 压力测试
    :param scheme_id: 
    :return: 
    """

    #     sql_str = """select id, ffp.wind_code_p, ffp.wind_code_s, wind_code, date_adj, invest_scale
    # from fof_fund_pct ffp,
    # (
    # select wind_code_p, max(date_adj) date_latest from fof_fund_pct group by wind_code_p
    # ) ff_date_latest,
    # fund_essential_info ffm
    # where ffp.wind_code_p = ff_date_latest.wind_code_p
    # and ffp.wind_code_s = ffm.wind_code_s
    # and ffp.date_adj = ff_date_latest.date_latest"""
    sql_str = "SELECT wind_code, invest_scale FROM scheme_fund_pct where scheme_id=%(scheme_id)s"
    engine = get_db_engine()
    fund_pct_df = pd.read_sql(sql_str,
                              engine,
                              params={'scheme_id': str(scheme_id)})

    date_to = date.today()
    date_to_str = date_to.strftime(STR_FORMAT_DATE)
    date_from = date_to - timedelta(days=365)
    date_from_str = date_from.strftime(STR_FORMAT_DATE)
    simulate_count = STRESS_TESTING_SIMULATE_COUNT_COPULA
    r = get_redis()

    wind_code_list = list(
        fund_pct_df['wind_code'])  # ['XT1410445.XT', 'J11039.OF']
    wind_code_count = len(wind_code_list)
    logger.info('do_copula for %d on wind_code_p with %s', scheme_id,
                wind_code_list)
    if wind_code_count <= 0:
        logger.warning('scheme %s has no sub fund list', scheme_id)
        return
    st = StressTest('Clayton')
    weighted_list = np.ones(wind_code_count)
    # max_dd_list = st.get_max_drawdown(['XT1410445.XT', 'J11039.OF'], '2016-01-01', '2016-12-31', np.ones(2), 10)
    max_dd_list = st.get_max_drawdown(wind_code_list, date_from_str,
                                      date_to_str, weighted_list,
                                      simulate_count)
    if max_dd_list is None or len(max_dd_list) == 0:
        logger.error('scheme %s has no copula test data. sub fund list: %s',
                     scheme_id, wind_code_list)
        return
        # max_dd_list_str = json.dumps(max_dd_list)
    y, x, patches = plt.hist(max_dd_list, 20)
    y = list(map(int, y))
    x = list(map(float, ["%.3f" % i for i in x]))
    key = 'scheme_%s_%s' % (scheme_id, 'copula')
    val_str = json.dumps({"x": x, "y": y})
    logger.debug('%s has been completer\n%s', key, val_str)
    r.set(key, val_str)
Example #2
0
def send_log():
    r = get_redis(host='10.0.5.107', db=5)
    t = r.pubsub()
    t.subscribe('stream')
    while True:
        for item in t.listen():
            log = item['data']
            if log != 1:
                try:
                    log = log.decode('utf-8')
                    socketio.emit('my_response',
                                  {'log':json.loads(log),'states':'connect'},
                                  namespace='/stream')
                except TypeError:
                    print(log)
Example #3
0
def do_fund_multi_factor_by_wind_code_list(wind_code_list):
    """
    对基金列表分别进行归因分析
    :param wind_code_list: 
    :return: 
    """
    r = get_redis()
    for n, wind_code in enumerate(wind_code_list):
        logger.info('')
        fund_exposure_his_df = get_fund_exposure_his(wind_code)
        if fund_exposure_his_df is not None:
            key = wind_code + 's:multi_factor'
            fund_exposure_str = json.dumps(fund_exposure_his_df.to_dict())
            r.set(key, fund_exposure_str)
            logger.debug('multi factor on %s with key: %s value:\n%s',
                         wind_code, key, fund_exposure_str)
Example #4
0
 def __call__(self, app, host, port, use_debugger, use_reloader):
     # override the default runserver command to start a Socket.IO server
     if use_debugger is None:
         use_debugger = app.debug
         if use_debugger is None:
             use_debugger = True
     if use_reloader is None:
         use_reloader = app.debug
         r = get_redis(host='127.0.0.1',db=3)
         r.flushdb()
         logger.info("用户fof缓存已清空")
     SocketIo.run(app,
                  host=host,
                  port=port,
                  debug=use_debugger,
                  use_reloader=use_reloader,
                  **self.server_options)
Example #5
0
# -*- coding: utf-8 -*-
"""
:copyright: (c) 2016 by Huang Dong 
:mail: [email protected].
:license: Apache 2.0, see LICENSE for more details.
"""
from celery import Celery
from celery.schedules import crontab
import os
from fof_app import create_app
from fof_app.tasks import log,update_fund,update_index,update_stock,stress_testing,update_future_daily,update_future_info
from config_fh import get_redis
from r_log import RedisHandler
import logging
logger = logging.getLogger()
r_handler = RedisHandler(channel='stream',redis_client=get_redis(host='10.0.5.107',db=5))
logger.addHandler(r_handler)


def create_celery(app):
    celery = Celery(app.import_name,
                    backend=app.config['CELERY_RESULT_BACKEND'],
                    broker=app.config['CELERY_BROKER_URL'])
    celery.conf.update(app.config)
    TaskBase = celery.Task
    class ContextTask(TaskBase):
        abstract = True
        def __call__(self, *args, **kwargs):
            with app.app_context():
                return TaskBase.__call__(self, *args, **kwargs)
    celery.Task = ContextTask
Example #6
0
File: wsgi.py Project: lxj0276/fof
# -*- coding: utf-8 -*-
"""
:copyright: (c) 2016 by Huang Dong 
:mail: [email protected].
:license: Apache 2.0, see LICENSE for more details.
"""
from fof_app import create_app
import os
from config_fh import get_redis
import logging
logger = logging.getLogger()
env = os.environ.get('APP_ENV', 'prod')
wsgi_app = create_app('fof_app.config.%sConfig' % env.capitalize())
r = get_redis(db=3)
r.flushdb()
if __name__ == '__main__':
    wsgi_app.run()
    logger.info("用户fof缓存已清空")
Example #7
0
    # file_path = plot_fof_copula(wind_code_list, weight_list, start_date, end_date, simulate_count)
    sql_str = """select id, ffp.wind_code_p, wind_code, date_adj, invest_scale 
from fof_fund_pct ffp,
(
select wind_code_p, max(date_adj) date_latest from fof_fund_pct group by wind_code_p
) ff_date_latest
where ffp.wind_code_p = ff_date_latest.wind_code_p
and ffp.date_adj = ff_date_latest.date_latest"""
    engine = get_db_engine()
    fof_fund_df = pd.read_sql(sql_str, engine)
    wind_code_fund_dic = dict(list(fof_fund_df.groupby('wind_code_p')))
    date_to = date.today() - timedelta(days=1)
    date_to_str = '2016-12-31'  # date_to.strftime(STR_FORMAT_DATE)
    date_from = date_to - timedelta()
    date_from_str = '2016-01-01'  # date_from.strftime(STR_FORMAT_DATE)
    simulate_count = 1000
    r = get_redis()
    for wind_code_p, fof_fund_sub_df in wind_code_fund_dic.items():
        wind_code_list = list(fof_fund_sub_df['wind_code'])
        wind_code_count = len(wind_code_list)
        if wind_code_count <= 0:
            continue
        st = stress_test('Clayton')
        weighted_list = np.ones(wind_code_count)
        max_dd_list = st.get_max_drawdown(['XT1410445.XT', 'J11039.OF'],
                                          date_from_str, date_to_str,
                                          weighted_list, simulate_count)
        max_dd_list_str = json.dumps(max_dd_list)
        r.set(wind_code_p, max_dd_list_str)
    print('finished')
Example #8
0
def do_copula(wind_code_list=[]):
    # sql_str = """select id, ffp.wind_code_p, wind_code, date_adj, invest_scale
    # from fof_fund_pct ffp,
    # (
    # select wind_code_p, max(date_adj) date_latest from fof_fund_pct group by wind_code_p
    # ) ff_date_latest
    # where ffp.wind_code_p = ff_date_latest.wind_code_p
    # and ffp.date_adj = ff_date_latest.date_latest"""
    sql_str = """select id, ffp.wind_code_p, ffp.wind_code_s, wind_code, date_adj, invest_scale 
from fof_fund_pct ffp,
(
select wind_code_p, max(date_adj) date_latest from fof_fund_pct group by wind_code_p
) ff_date_latest,
fund_essential_info ffm
where ffp.wind_code_p = ff_date_latest.wind_code_p
and ffp.wind_code_s = ffm.wind_code_s
and ffp.date_adj = ff_date_latest.date_latest"""
    engine = get_db_engine()
    fof_fund_df = pd.read_sql(sql_str, engine)
    # 按 母基金代码进行分组
    wind_code_fund_dic = dict(list(fof_fund_df.groupby('wind_code_p')))
    # 按 基金代码进行分组,对应所有 wind_code_s 代码
    # wind_code_df_dic = dict(list(fof_fund_df[['wind_code', 'wind_code_s']].groupby('wind_code')))
    # wind_code_s_dic = {wind_code: set(df['wind_code_s'].values) for wind_code, df in wind_code_df_dic.items()}

    date_to = date.today()
    date_to_str = date_to.strftime(STR_FORMAT_DATE)
    date_from = date_to - timedelta(days=365)
    date_from_str = date_from.strftime(STR_FORMAT_DATE)
    simulate_count = STRESS_TESTING_SIMULATE_COUNT_COPULA
    r = get_redis()
    if wind_code_list is not None and len(wind_code_list) > 0:
        wind_code_set = set(wind_code_list)
    else:
        wind_code_set = None
    for wind_code_p, fof_fund_sub_df in wind_code_fund_dic.items():
        if wind_code_set is not None and wind_code_p not in wind_code_set:
            continue
        wind_code_list = list(
            fof_fund_sub_df['wind_code'])  # ['XT1410445.XT', 'J11039.OF']
        wind_code_count = len(wind_code_list)
        logger.info('do_copula on wind_code_p with %s', wind_code_list)
        if wind_code_count <= 0:
            continue
        st = StressTest('Clayton')
        weighted_list = np.ones(wind_code_count)
        # max_dd_list = st.get_max_drawdown(['XT1410445.XT', 'J11039.OF'], '2016-01-01', '2016-12-31', np.ones(2), 10)
        max_dd_list = st.get_max_drawdown(wind_code_list, date_from_str,
                                          date_to_str, weighted_list,
                                          simulate_count)
        if max_dd_list is None or len(max_dd_list) == 0:
            logger.error('%s has no copula test data. sub fund list: %s',
                         wind_code_p, wind_code_list)
            continue
            # max_dd_list_str = json.dumps(max_dd_list)
        y, x, patches = plt.hist(max_dd_list, 10)
        y = list(map(int, y))
        x = list(map(float, ["%.3f" % i for i in x]))
        key = '%s:%s' % (wind_code_p, 'copula')
        logger.debug('%s has been completer' % key)
        r.set(key, json.dumps({"x": x, "y": y}))
Example #9
0
def do_fhs_garch_4_scheme(scheme_id):
    """
    根据 scheme_id 计算相关组合的 fhs-garch 压力测试
    :param scheme_id: 
    :return: 
    """

    sql_str = "SELECT wind_code, invest_scale FROM scheme_fund_pct where scheme_id=%s"
    engine = get_db_engine()
    fund_pct_df = pd.read_sql(sql_str, engine, params=[str(scheme_id)])

    simulate_count = STRESS_TESTING_SIMULATE_COUNT_FHS_GARCH
    wind_code_list = list(
        fund_pct_df['wind_code'])  # ['XT1410445.XT', 'J11039.OF']
    wind_code_count = len(wind_code_list)
    if wind_code_count <= 0:
        logger.warning('scheme %s has no sub fund list', scheme_id)
        return
    # 执行 fhs-garch压力测试
    simulate_comp_df, simulate_df_dic = fof_fhs_garch(wind_code_list,
                                                      simulate_count)
    if simulate_comp_df is None:
        logger.error('scheme %s has no FHS GARCH test data. sub fund list: %s',
                     scheme_id, wind_code_list)
        return
    logger.info('do_fhs_garch for %d on wind_code_p with %s', scheme_id,
                wind_code_list)
    # 将组合压力测试结果存储到 redis 上面
    r = get_redis()
    for wind_code, simulate_df in simulate_df_dic.items():
        time_line = simulate_df.index
        time_line = [i.strftime('%Y-%m-%d') for i in time_line]
        df = simulate_df.T.quantile(QUANTILE_LIST).T
        result = {
            "time":
            time_line,
            "data": [{
                "name": i,
                "data": np.array(df[i]).tolist()
            } for i in df.columns],
            'show_count':
            simulate_count
        }
        # 将wind_code 及 wind_code_s 对应的压力测试结果插入redis
        key = '%s_%s' % (wind_code, 'fhs_garch')
        logger.info('%s has been complete,', key)
        r.set(key, json.dumps(result))

    time_line = simulate_comp_df.index
    time_line = [i.strftime('%Y-%m-%d') for i in time_line]
    df = simulate_comp_df.T.quantile(QUANTILE_LIST).T
    result = {
        "time": time_line,
        "data": [{
            "name": i,
            "data": np.array(df[i]).tolist()
        } for i in df.columns],
        'show_count': simulate_count
    }
    key = 'scheme_%s_%s' % (scheme_id, 'fhs_garch')
    val_str = json.dumps(result)
    logger.info('%s has benn complate\n%s', key, val_str)
    r.set(key, val_str)
Example #10
0
def do_fhs_garch(wind_code_p_list=[]):
    """
    后台作业,对数据库中所有fof基金进行压力测试
    如果 wind_code_p_list 不为空,则近执行 wind_code_p_list 中的母基金
    :return: 
    """
    # sql_str = """select id, ffp.wind_code_p, wind_code_s, date_adj, invest_scale
    # from fof_fund_pct ffp,
    # (
    # select wind_code_p, max(date_adj) date_latest from fof_fund_pct group by wind_code_p
    # ) ff_date_latest
    # where ffp.wind_code_p = ff_date_latest.wind_code_p
    # and ffp.date_adj = ff_date_latest.date_latest"""
    sql_str = """select id, ffp.wind_code_p, ffp.wind_code_s, wind_code, date_adj, invest_scale 
from fof_fund_pct ffp,
(
	select wind_code_p, max(date_adj) date_latest 
    from fof_fund_pct group by wind_code_p
) ff_date_latest,
fund_essential_info ffm
where ffp.wind_code_p = ff_date_latest.wind_code_p
and ffp.wind_code_s = ffm.wind_code_s
and ffp.date_adj = ff_date_latest.date_latest"""
    engine = get_db_engine()
    fof_fund_df = pd.read_sql(sql_str, engine)
    # 按 母基金代码进行分组
    wind_code_fund_dic = dict(list(fof_fund_df.groupby('wind_code_p')))
    # 按 基金代码进行分组,对应所有 wind_code_s 代码
    wind_code_df_dic = dict(
        list(fof_fund_df[['wind_code', 'wind_code_s']].groupby('wind_code')))
    wind_code_s_dic = {
        wind_code: set(df['wind_code_s'].values)
        for wind_code, df in wind_code_df_dic.items()
    }

    date_to = date.today()
    date_to_str = date_to.strftime(STR_FORMAT_DATE)
    date_from = date_to - timedelta(days=365)
    date_from_str = date_from.strftime(STR_FORMAT_DATE)
    simulate_count = STRESS_TESTING_SIMULATE_COUNT_FHS_GARCH
    r = get_redis()
    if wind_code_p_list is not None and len(wind_code_p_list) > 0:
        wind_code_p_set = set(wind_code_p_list)
    else:
        wind_code_p_set = None
    for wind_code_p, fof_fund_sub_df in wind_code_fund_dic.items():
        if wind_code_p_set is not None and wind_code_p not in wind_code_p_set:
            logger.debug('%s 不在列表中 跳过', wind_code_p)
            continue
        wind_code_list = list(
            fof_fund_sub_df['wind_code'])  # ['XT1410445.XT', 'J11039.OF']
        wind_code_count = len(wind_code_list)
        if wind_code_count <= 0:
            continue
        simulate_comp_df, simulate_df_dic = fof_fhs_garch(
            wind_code_list, simulate_count)
        if simulate_comp_df is None:
            logger.error('%s has no FHS GARCH test data. sub fund list: %s',
                         wind_code_p, wind_code_list)
            continue
        for wind_code, simulate_df in simulate_df_dic.items():

            time_line = simulate_df.index
            time_line = [i.strftime('%Y-%m-%d') for i in time_line]
            df = simulate_df.T.quantile(QUANTILE_LIST).T
            result = {
                "time":
                time_line,
                "data": [{
                    "name": i,
                    "data": np.array(df[i]).tolist()
                } for i in df.columns]
            }
            result['show_count'] = simulate_count
            # 将wind_code 及 wind_code_s 对应的压力测试结果插入redis
            key = '%s_%s' % (wind_code, 'fhs_garch')
            logger.info('%s has been complete,', key)
            r.set(key, json.dumps(result))
            for wind_code_s in wind_code_s_dic[wind_code]:
                key = '%s_%s' % (wind_code_s, 'fhs_garch')
                logger.info('%s has been complete,', key)
                r.set(key, json.dumps(result))

        time_line = simulate_comp_df.index
        time_line = [i.strftime('%Y-%m-%d') for i in time_line]
        df = simulate_comp_df.T.quantile(QUANTILE_LIST).T
        result = {
            "time":
            time_line,
            "data": [{
                "name": i,
                "data": np.array(df[i]).tolist()
            } for i in df.columns],
            'show_count':
            simulate_count
        }
        key = '%s_%s' % (wind_code_p, 'fhs_garch')
        logger.info('%s has benn complate', key)
        r.set(key, json.dumps(result))