def prepare_dataset(self): # 训练图片汇成HDF5合集 preapare train_img/groundtruth.hdf5 imgs_train, groundTruth=self._access_dataset(self.train_img_path,self.train_groundtruth_path,self.train_type) write_hdf5(imgs_train,self.hdf5_path+"/train_img.hdf5") write_hdf5(groundTruth, self.hdf5_path+"/train_groundtruth.hdf5") print("[INFO] Saving Training Data") # 测试图片汇成HDF5合集 preapare val_img/groundtruth.hdf5 imgs_val, groundTruth = self._access_dataset(self.val_img_path, self.val_groundtruth_path, self.val_type) write_hdf5(imgs_val, self.hdf5_path + "/val_img.hdf5") write_hdf5(groundTruth, self.hdf5_path + "/val_groundtruth.hdf5") print("[INFO] Saving Validation Data")
def prepare_dataset(self): # 训练图片汇成HDF5合集 preapare train_img/groundtruth.hdf5 imgs_train, groundTruth = self._access_dataset( "C:\\Users\\kk\\Desktop\\Optic-Disc-Unet-master-Braits\\Optic-Disc-Unet-master\\Optic-Disc-Unet-master\\experiments\\OpticDisc\\dataset\\train\\origin", "C:\\Users\\kk\\Desktop\\Optic-Disc-Unet-master-Braits\\Optic-Disc-Unet-master\\Optic-Disc-Unet-master\\experiments\\OpticDisc\\dataset\\train\\groundtruth", self.train_type) write_hdf5(imgs_train, self.hdf5_path + "/train_img.hdf5") write_hdf5(groundTruth, self.hdf5_path + "/train_groundtruth.hdf5") print("[INFO] Saving Training Data") # 测试图片汇成HDF5合集 preapare val_img/groundtruth.hdf5 imgs_val, groundTruth = self._access_dataset( "C:\\Users\\kk\\Desktop\\Optic-Disc-Unet-master-Braits\\Optic-Disc-Unet-master\\Optic-Disc-Unet-master\\experiments\\OpticDisc\\dataset\\validate\\origin", "C:\\Users\\kk\\Desktop\\Optic-Disc-Unet-master-Braits\\Optic-Disc-Unet-master\\Optic-Disc-Unet-master\\experiments\\OpticDisc\\dataset\\validate\\groundtruth", self.val_type) write_hdf5(imgs_val, self.hdf5_path + "/val_img.hdf5") write_hdf5(groundTruth, self.hdf5_path + "/val_groundtruth.hdf5") print("[INFO] Saving Validation Data")
def prepare_dataset(self): if self.dataset == 'CHASEDB1': print('Writing CHASEDB1....') imgs_train, train_groundTruth=self._accesee_dataset_CHASEDB1(self.train_img_path) imgs_val, val_groundTruth = self._accesee_dataset_CHASEDB1(self.val_img_path) elif self.dataset == 'DRIVE': print('Writing DRIVE....') imgs_train, train_groundTruth=self._access_dataset(self.train_img_path,self.train_groundtruth_path,self.train_type,'train') imgs_val, val_groundTruth = self._access_dataset(self.val_img_path,self.val_groundtruth_path,self.val_type,'val') elif self.dataset == 'DRIVE_MULTICLASS': print('Writing DRIVE_MULTICALSS....') imgs_train, train_groundTruth=self._access_multiclass_dataset(self.train_img_path,self.train_groundtruth_path,self.train_type,'train') imgs_val, val_groundTruth = self._access_multiclass_dataset(self.val_img_path,self.val_groundtruth_path,self.val_type,'val') elif self.dataset == 'STARE': print('Writing STARE....') imgs_train, train_groundTruth=self._access_STARE_dataset(self.train_img_path,self.train_groundtruth_path,self.train_type,'train') imgs_val, val_groundTruth = self._access_STARE_dataset(self.val_img_path,self.val_groundtruth_path,self.val_type,'val') elif self.dataset=='CROSS': imgs_train, train_groundTruth=self._access_dataset(self.train_img_path,self.train_groundtruth_path,self.train_type,'train') imgs_val, val_groundTruth = self._accesee_dataset_CHASEDB1(self.val_img_path) elif self.dataset == 'HRF': imgs_train, train_groundTruth=self._access_HRF_dataset(self.train_img_path,self.train_groundtruth_path,self.train_type,'train') imgs_val, val_groundTruth = self._access_HRF_dataset(self.val_img_path,self.val_groundtruth_path,self.val_type,'val') elif self.dataset == 'prob': imgs_train, train_groundTruth=self._access_dataset(self.train_img_path,self.train_groundtruth_path,self.train_type,'train') imgs_val, val_groundTruth = self._access_dataset(self.val_img_path,self.val_groundtruth_path,self.val_type,'val') probs_train = self._access_prob_dataset(self.train_img_path,self.train_groundtruth_path,self.prob_path,self.val_type,'prob') probs_val = self._access_prob_dataset(self.val_img_path,self.val_groundtruth_path,self.prob_val_path,self.val_type,'val_prob') # imgs_train, train_groundTruth=self._accesee_dataset_CHASEDB1(self.train_img_path) # imgs_val, val_groundTruth = self._access_dataset(self.val_img_path,self.val_groundtruth_path,self.val_type,'val') write_hdf5(imgs_train,self.hdf5_path+"/_"+self.dataset+"_train_img.hdf5") write_hdf5(train_groundTruth, self.hdf5_path+"/_"+self.dataset+"_train_groundtruth.hdf5") print("[INFO] Saving Training Data") # 测试图片汇成HDF5合集 preapare val_img/groundtruth.hdf5 # imgs_val, groundTruth = self._accesee_dataset_CHASEDB1(self.val_img_path) write_hdf5(imgs_val, self.hdf5_path + "/_"+self.dataset+"_val_img.hdf5") write_hdf5(val_groundTruth, self.hdf5_path + "/_"+self.dataset+"_val_groundtruth.hdf5") print("[INFO] Saving Validation Data") if self.dataset =='prob': write_hdf5(probs_val,self.hdf5_path+"/_"+self.dataset+"_prob_val_img.hdf5") write_hdf5(probs_train,self.hdf5_path+"/_"+self.dataset+"_prob_img.hdf5") # write_hdf5(train_groundTruth, self.hdf5_path+"/_"+self.dataset+"_train_groundtruth.hdf5") print("[INFO] Saving prob Data")