Example #1
0
def run_SiamRPN_OPF(seq, rp, bSaveImage):
    os.environ['CUDA_VISIBLE_DEVICES'] = auto_select_gpu()
    config_name = "SiamRPN_ftall"
    CHECKPOINT = '/home/lab-xiong.jiangfeng/Projects/SiameseRPN/Logs/%s/track_model_checkpoints/%s' % (
        config_name, config_name)
    logging.info('Evaluating {}...'.format(CHECKPOINT))

    # Read configurations from json
    model_config, _, track_config = load_cfgs(CHECKPOINT)
    track_config['log_level'] = 0  # Skip verbose logging for speed

    np.random.seed(1234)
    tf.set_random_seed(1234)
    g = tf.Graph()

    with g.as_default():
        model = get_model(model_config['Model'])(model_config=model_config,
                                                 mode='inference')
        model.build(reuse=tf.AUTO_REUSE)
        model.online_net = OnlineNet(online_config,
                                     is_training=True,
                                     reuse=False)
        model.online_valnet = OnlineNet(online_config,
                                        is_training=False,
                                        reuse=True)
        global_variables_init_op = tf.global_variables_initializer()

    gpu_options = tf.GPUOptions(allow_growth=True)
    sess_config = tf.ConfigProto(gpu_options=gpu_options)
    sess_config.gpu_options.per_process_gpu_memory_fraction = 0.2

    with tf.Session(graph=g, config=sess_config) as sess:
        sess.run(global_variables_init_op)
        model.restore_weights_from_checkpoint(sess, 605000)
        tracker = OnlineTracker(sess,
                                model,
                                track_config,
                                online_config,
                                show_video=0)

        tic = time.clock()
        frames = seq.s_frames
        init_rect = seq.init_rect
        x, y, width, height = init_rect  # OTB format
        init_bb = Rectangle(x - 1, y - 1, width, height)
        trajectory_py = tracker.track(init_bb, frames, bSaveImage, rp)
        #print(trajectory_py)
        trajectory = [
            Rectangle(val.x + 1, val.y + 1, val.width, val.height)
            for val in trajectory_py
        ]  # x, y add one to match OTB format
        duration = time.clock() - tic

        result = dict()
        result['res'] = trajectory
        result['type'] = 'rect'
        result['fps'] = round(seq.len / duration, 3)
    return result
Example #2
0
def main(model_config, train_config, track_config):
  # Create training directory
  train_dir = train_config['train_dir']
  if not tf.gfile.IsDirectory(train_dir):
    tf.logging.info('Creating training directory: %s', train_dir)
    tf.gfile.MakeDirs(train_dir)

  # Build the Tensorflow graph
  g = tf.Graph()
  with g.as_default():
    # Set fixed seed
    np.random.seed(train_config['seed'])
    tf.set_random_seed(train_config['seed'])

    # Build the model
    model = get_model(model_config['Model'])(model_config, train_config, mode='inference')
    model.build()

    # Save configurations for future reference
    save_cfgs(train_dir, model_config, train_config, track_config)

    saver = tf.train.Saver(tf.global_variables(),
                           max_to_keep=train_config['max_checkpoints_to_keep'])

    # Dynamically allocate GPU memory
    gpu_options = tf.GPUOptions(allow_growth=True)
    sess_config = tf.ConfigProto(gpu_options=gpu_options)

    sess = tf.Session(config=sess_config)
    model_path = tf.train.latest_checkpoint(train_config['train_dir'])

    if not model_path:
      # Initialize all variables
      #sess.run(tf.global_variables_initializer())
      #sess.run(tf.local_variables_initializer())
      start_step = 0

      # Load pretrained embedding model if needed
      sess.run(load_pickle_model())
      print_trainable(sess)
    else:
      logging.info('Restore from last checkpoint: {}'.format(model_path))
      sess.run(tf.local_variables_initializer())
      saver.restore(sess, model_path)
      start_step = tf.train.global_step(sess, model.global_step.name) + 1

    checkpoint_path = osp.join(train_config['train_dir'], 'model.ckpt')
    saver.save(sess, checkpoint_path, global_step=start_step)
Example #3
0
def main(model_config, train_config, track_config):

    # GPU Config
    gpu_list = train_config['train_data_config'].get('gpu_ids', '0')
    num_gpus = len(gpu_list.split(','))
    if num_gpus > 1:
        os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
    else:
        os.environ['CUDA_VISIBLE_DEVICES'] = auto_select_gpu()

    # Create training directory which will be used to save: configurations, model files, TensorBoard logs
    train_dir = train_config['train_dir']
    if not osp.isdir(train_dir):
        logging.info('Creating training directory: %s', train_dir)
        mkdir_p(train_dir)

    g = tf.Graph()
    with g.as_default():
        # Set fixed seed for reproducible experiments
        random.seed(train_config['seed'])
        np.random.seed(train_config['seed'])
        tf.set_random_seed(train_config['seed'])

        #Build global step
        with tf.name_scope('train/'):
            global_step = tf.Variable(initial_value=0,
                                      name='global_step',
                                      trainable=False,
                                      collections=[
                                          tf.GraphKeys.GLOBAL_STEP,
                                          tf.GraphKeys.GLOBAL_VARIABLES
                                      ])

        Model = get_model(model_config['Model'])

        # build training dataloader and validation dataloader
        #---train
        train_dataloader = DataLoader(train_config['train_data_config'],
                                      is_training=True)
        train_dataloader.build()
        train_inputs = train_dataloader.get_one_batch()

        #---validation
        val_dataloader = DataLoader(train_config['validation_data_config'],
                                    is_training=False)
        val_dataloader.build()
        val_inputs = val_dataloader.get_one_batch()

        # Save configurations for future reference
        save_cfgs(train_dir, model_config, train_config, track_config)

        if train_config['lr_config'].get('lr_warmup', False):
            warmup_epoch_num = 10
            init_lr_ratio = 0.8
            warmup_steps = warmup_epoch_num * int(
                train_config['train_data_config']['num_examples_per_epoch']
            ) // train_config['train_data_config']['batch_size']
            inc_per_step = (
                1 - init_lr_ratio
            ) * train_config['lr_config']['initial_lr'] / warmup_steps
            warmup_lr = train_config['lr_config'][
                'initial_lr'] * init_lr_ratio + inc_per_step * tf.to_float(
                    global_step)
            learning_rate = tf.cond(
                tf.less(global_step,
                        warmup_steps), lambda: tf.identity(warmup_lr),
                lambda: _configure_learning_rate(train_config, global_step -
                                                 warmup_steps))
        else:
            learning_rate = _configure_learning_rate(train_config, global_step)

        optimizer = _configure_optimizer(train_config, learning_rate)
        tf.summary.scalar('learning_rate', learning_rate)

        # Set up the training ops
        examplars, instances, gt_examplar_boxes, gt_instance_boxes = tf.split(train_inputs[0],num_gpus), \
                                                                     tf.split(train_inputs[1],num_gpus), \
                                                                     tf.split(train_inputs[2],num_gpus), \
                                                                     tf.split(train_inputs[3],num_gpus)

        if train_config['train_data_config'].get('time_decay', False):
            time_intervals = tf.split(train_inputs[4], num_gpus)

        tower_grads = []
        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(num_gpus):
                with tf.device('/gpu:%d' % i):
                    if train_config['train_data_config'].get(
                            'time_decay', False):
                        inputs = [
                            examplars[i], instances[i], gt_examplar_boxes[i],
                            gt_instance_boxes[i], time_intervals[i]
                        ]
                    else:
                        inputs = [
                            examplars[i], instances[i], gt_examplar_boxes[i],
                            gt_instance_boxes[i]
                        ]
                    model = tower_model(Model,
                                        inputs,
                                        model_config,
                                        train_config,
                                        mode='train')
                    # Reuse variables for the next tower.
                    tf.get_variable_scope().reuse_variables()
                    grads = optimizer.compute_gradients(model.total_loss)
                    tower_grads.append(grads)
        grads = average_gradients(tower_grads)

        #Clip gradient
        gradients, tvars = zip(*grads)
        clip_gradients, _ = tf.clip_by_global_norm(
            gradients, train_config['clip_gradients'])
        train_op = optimizer.apply_gradients(zip(clip_gradients, tvars),
                                             global_step=global_step)

        #Build validation model
        with tf.device('/gpu:0'):
            model_va = Model(model_config,
                             train_config,
                             mode='validation',
                             inputs=val_inputs)
            model_va.build(reuse=True)

        #Save Model setup
        saver = tf.train.Saver(
            tf.global_variables(),
            max_to_keep=train_config['max_checkpoints_to_keep'])

        summary_writer = tf.summary.FileWriter(train_dir, g)
        summary_op = tf.summary.merge_all()

        global_variables_init_op = tf.global_variables_initializer()
        local_variables_init_op = tf.local_variables_initializer()

        # Dynamically allocate GPU memory
        gpu_options = tf.GPUOptions(allow_growth=True)
        sess_config = tf.ConfigProto(gpu_options=gpu_options,
                                     allow_soft_placement=True)
        #inter_op_parallelism_threads = 16, intra_op_parallelism_threads = 16, log_device_placement=True)

        ######Debug timeline
        if Debug:
            from tensorflow.python.client import timeline
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            run_metadata = tf.RunMetadata()
        ######Debug timeline

        sess = tf.Session(config=sess_config)
        model_path = tf.train.latest_checkpoint(train_config['train_dir'])

        if not model_path:
            sess.run(global_variables_init_op)
            sess.run(local_variables_init_op)
            start_step = 0
            if model_config['embed_config']['embedding_checkpoint_file']:
                model.init_fn(sess)
            elif model_config['finetuned_checkpoint_file']:
                finetuned_checkpoint_file = tf.train.latest_checkpoint(
                    model_config['finetuned_checkpoint_file'])
                logging.info('Restore from last checkpoint: {}'.format(
                    finetuned_checkpoint_file))
                sess.run(local_variables_init_op)
                sess.run(global_variables_init_op)
                restore_op = tf.contrib.slim.assign_from_checkpoint_fn(
                    finetuned_checkpoint_file,
                    tf.global_variables(),
                    ignore_missing_vars=True)
                restore_op(sess)
                #reset global step saved in checkpoint
                global_step_reset_op = global_step.assign(0)
                sess.run(global_step_reset_op)
        else:
            logging.info('Restore from last checkpoint: {}'.format(model_path))
            sess.run(local_variables_init_op)
            sess.run(global_variables_init_op)
            #saver.restore(sess, model_path)
            restore_op = tf.contrib.slim.assign_from_checkpoint_fn(
                model_path, tf.global_variables(), ignore_missing_vars=True)
            restore_op(sess)

        start_step = tf.train.global_step(sess, global_step.name) + 1
        print_trainable(sess)  #help function, can be disenable
        g.finalize()  # Finalize graph to avoid adding ops by mistake

        # Training loop
        data_config = train_config['train_data_config']
        total_steps = int(data_config['epoch'] *
                          data_config['num_examples_per_epoch'] /
                          data_config['batch_size'])
        logging.info('Train for {} steps'.format(total_steps))
        for step in range(start_step, total_steps):
            try:
                start_time = time.time()
                if Debug:
                    _, loss, batch_loss, current_lr = sess.run(
                        [
                            train_op, model.total_loss, model.batch_loss,
                            learning_rate
                        ],
                        run_metadata=run_metadata,
                        options=run_options)
                    t1 = timeline.Timeline(run_metadata.step_stats)
                    ctf = t1.generate_chrome_trace_format()
                    with open('timeline.json', 'w') as f:
                        f.write(ctf)
                else:
                    _, loss, batch_loss, current_lr = sess.run([
                        train_op, model.total_loss, model.batch_loss,
                        learning_rate
                    ])
                duration = time.time() - start_time

                if step % 10 == 0:
                    examples_per_sec = data_config['batch_size'] / float(
                        duration)
                    time_remain = data_config['batch_size'] * (
                        total_steps - step) / examples_per_sec
                    current_epoch = (
                        step * data_config['batch_size']
                    ) // data_config['num_examples_per_epoch'] + 1
                    m, s = divmod(time_remain, 60)
                    h, m = divmod(m, 60)
                    format_str = (
                        '%s: epoch %d-step %d,lr = %f, total loss = %.3f, batch loss = %.3f (%.1f examples/sec; %.3f '
                        'sec/batch; %dh:%02dm:%02ds remains)')
                    logging.info(
                        format_str %
                        (datetime.now(), current_epoch, step, current_lr, loss,
                         batch_loss, examples_per_sec, duration, h, m, s))

                if step % 200 == 0:
                    summary_str = sess.run(summary_op)
                    summary_writer.add_summary(summary_str, step)

                if step % train_config['save_model_every_n_step'] == 0 or (
                        step + 1) == total_steps:
                    checkpoint_path = osp.join(train_config['train_dir'],
                                               'model.ckpt')
                    saver.save(sess, checkpoint_path, global_step=step)
            except KeyboardInterrupt:
                checkpoint_path = osp.join(train_config['train_dir'],
                                           'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
                print("save model.ckpt-%d" % (step))
                break
            except:
                print(traceback.format_exc())
                print("Error found in current step, continue")
Example #4
0
    return [cx - (w - 1) // 2, cy - (h - 1) // 2, w, h]


if __name__ == "__main__":
    os.environ['CUDA_VISIBLE_DEVICES'] = auto_select_gpu()

    MODEL = "SiamRPN"
    CHECKPOINT = "Logs/%s/track_model_checkpoints/%s" % (MODEL, MODEL)

    gpu_options = tf.GPUOptions(allow_growth=True)
    sess_config = tf.ConfigProto(gpu_options=gpu_options)
    with tf.Session(config=sess_config) as sess:

        #1. init Tracker Model
        model_config, _, track_config = load_cfgs(CHECKPOINT)
        model = get_model(model_config['Model'])(model_config=model_config,
                                                 mode='inference')
        model.build(reuse=tf.AUTO_REUSE)

        global_variables_init_op = tf.global_variables_initializer()
        sess.run(global_variables_init_op)
        model.restore_weights_from_checkpoint(sess)
        tracker = Tracker(sess, model, track_config, True)

        #2. load tracking video
        tracking_dir = "dataset/demo/bag"
        gt_file = os.path.join(tracking_dir, "groundtruth.txt")
        try:
            first_bbox = loadtxt(gt_file, delimiter=',')[0]
        except:
            try:
                first_bbox = loadtxt(gt_file, delimiter='\t')[0]