Example #1
0
def main():
    try:
        # suppress debugging messages of TensorFlow
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

        config = Configuration()

        if config.case_base_for_inference:
            dataset: CBSDataset = CBSDataset(config.case_base_folder, config, training=False)
        else:
            dataset: CBSDataset = CBSDataset(config.training_data_folder, config, training=False)

        dataset.load()

        checker = ConfigChecker(config, dataset, 'cbs', training=False)
        checker.pre_init_checks()

        cbs = CBS(config, False, dataset)
        inference = Inference(config, cbs, dataset)

        checker.post_init_checks(cbs)

        print('Ensure right model file is used:')
        print(config.directory_model_to_use, '\n')

        inference.infer_test_dataset()
        cbs.kill_threads()

    except KeyboardInterrupt:
        try:
            cbs.kill_threads()
        except:
            pass
Example #2
0
def main():
    try:
        # suppress debugging messages of TensorFlow
        os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
        # os.environ['report_tensor_allocations_upon_oom'] = '1'
        config = Configuration()

        dataset = CBSDataset(config.training_data_folder, config, training=True)
        dataset.load()

        checker = ConfigChecker(config, dataset, 'cbs', training=True)
        checker.pre_init_checks()

        print('Initializing case based similarity measure ...\n')
        cbs = CBS(config, True, dataset)

        checker.post_init_checks(cbs)

        print('\nTraining:\n')
        optimizer = CBSOptimizer(cbs, dataset, config)
        optimizer.optimize()

    except KeyboardInterrupt:
        try:
            cbs.kill_threads()
        except:
            pass
Example #3
0
def main():
    config = Configuration()

    if config.case_base_for_inference:
        dataset: FullDataset = FullDataset(config.case_base_folder,
                                           config,
                                           training=False)
    else:
        dataset: FullDataset = FullDataset(config.training_data_folder,
                                           config,
                                           training=False)

    dataset.load()
    dataset = Representation.convert_dataset_to_baseline_representation(
        config, dataset)

    checker = ConfigChecker(config, dataset, 'snn', training=False)
    checker.pre_init_checks()

    architecture = initialise_snn(config, dataset, False)

    checker.post_init_checks(architecture)

    inference = Inference(config, architecture, dataset)

    if config.print_model:
        tf.keras.utils.plot_model(architecture.encoder.model,
                                  to_file='model.png',
                                  show_shapes=True,
                                  expand_nested=True)

    print('Ensure right model file is used:')
    print(config.directory_model_to_use, '\n')

    inference.infer_test_dataset()
Example #4
0
def main():
    config = Configuration()
    config.print_detailed_config_used_for_training()

    dataset = FullDataset(config.training_data_folder, config, training=True)
    dataset.load()
    dataset = Representation.convert_dataset_to_baseline_representation(
        config, dataset)

    checker = ConfigChecker(config, dataset, 'snn', training=True)
    checker.pre_init_checks()

    snn = initialise_snn(config, dataset, True)
    snn.print_detailed_model_info()

    if config.print_model:
        tf.keras.utils.plot_model(snn.encoder.model,
                                  to_file='model.png',
                                  show_shapes=True,
                                  expand_nested=True)

    checker.post_init_checks(snn)

    start_time_string = datetime.now().strftime("%m-%d_%H-%M-%S")

    print('---------------------------------------------')
    print('Training:')
    print('---------------------------------------------')
    print()
    optimizer = SNNOptimizer(snn, dataset, config)
    optimizer.optimize()

    print()
    print('---------------------------------------------')
    print('Inference:')
    print('---------------------------------------------')
    print()
    change_model(config, start_time_string)

    if config.case_base_for_inference:
        dataset: FullDataset = FullDataset(config.case_base_folder,
                                           config,
                                           training=False)
    else:
        dataset: FullDataset = FullDataset(config.training_data_folder,
                                           config,
                                           training=False)

    dataset.load()
    dataset = Representation.convert_dataset_to_baseline_representation(
        config, dataset)

    snn = initialise_snn(config, dataset, False)

    inference = Inference(config, snn, dataset)
    inference.infer_test_dataset()
def main():
    # suppress debugging messages of TensorFlow
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    config = Configuration()
    config.print_detailed_config_used_for_training()

    dataset = FullDataset(config.training_data_folder, config, training=True)
    dataset.load()

    checker = ConfigChecker(config, dataset, 'snn', training=True)
    checker.pre_init_checks()

    snn = initialise_snn(config, dataset, True)
    snn.print_detailed_model_info()

    checker.post_init_checks(snn)

    start_time_string = datetime.now().strftime("%m-%d_%H-%M-%S")

    print('---------------------------------------------')
    print('Training:')
    print('---------------------------------------------')
    print()
    optimizer = SNNOptimizer(snn, dataset, config)
    optimizer.optimize()

    print()
    print('---------------------------------------------')
    print('Inference:')
    print('---------------------------------------------')
    print()
    change_model(config, start_time_string)

    if config.case_base_for_inference:
        dataset: FullDataset = FullDataset(config.case_base_folder,
                                           config,
                                           training=False)
    else:
        dataset: FullDataset = FullDataset(config.training_data_folder,
                                           config,
                                           training=False)

    dataset.load()

    snn = initialise_snn(config, dataset, False)

    inference = Inference(config, snn, dataset)
    inference.infer_test_dataset()
Example #6
0
def main():
    config = Configuration()

    dataset = FullDataset(config.training_data_folder, config, training=True)
    dataset.load()
    dataset = Representation.convert_dataset_to_baseline_representation(
        config, dataset)

    checker = ConfigChecker(config, dataset, 'snn', training=True)
    checker.pre_init_checks()

    snn = initialise_snn(config, dataset, True)
    snn.print_detailed_model_info()

    checker.post_init_checks(snn)

    print('Training:')
    optimizer = SNNOptimizer(snn, dataset, config)
    optimizer.optimize()
Example #7
0
def main():
    # suppress debugging messages of TensorFlow
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    config = Configuration()

    dataset = FullDataset(config.training_data_folder, config, training=True)
    dataset.load()

    checker = ConfigChecker(config, dataset, 'snn', training=True)
    checker.pre_init_checks()

    snn = initialise_snn(config, dataset, True)
    snn.print_detailed_model_info()

    checker.post_init_checks(snn)

    print('Training:')
    optimizer = SNNOptimizer(snn, dataset, config)
    optimizer.optimize()
Example #8
0
def main():
    # suppress debugging messages of TensorFlow
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    config = Configuration()

    if config.case_base_for_inference:
        dataset: FullDataset = FullDataset(config.case_base_folder,
                                           config,
                                           training=False)
    else:
        dataset: FullDataset = FullDataset(config.training_data_folder,
                                           config,
                                           training=False)

    dataset.load()

    checker = ConfigChecker(config, dataset, 'snn', training=False)
    checker.pre_init_checks()

    architecture = initialise_snn(config, dataset, False)

    checker.post_init_checks(architecture)

    inference = Inference(config, architecture, dataset)

    if config.print_model:
        tf.keras.utils.plot_model(architecture.encoder.model,
                                  to_file='model.png',
                                  show_shapes=True,
                                  expand_nested=True)

    print('Ensure right model file is used:')
    print(config.directory_model_to_use, '\n')

    inference.infer_test_dataset()
Example #9
0
def main():
    config = Configuration()
    config.print_detailed_config_used_for_training()

    dataset = FullDataset(config.training_data_folder, config, training=True, model_selection=True)
    dataset.load()
    dataset = Representation.convert_dataset_to_baseline_representation(config, dataset)

    checker = ConfigChecker(config, dataset, 'snn', training=True)
    checker.pre_init_checks()

    snn = initialise_snn(config, dataset, True)
    snn.print_detailed_model_info()

    if config.print_model:
        tf.keras.utils.plot_model(snn.encoder.model, to_file='model.png', show_shapes=True, expand_nested=True)

    checker.post_init_checks(snn)

    start_time_string = datetime.now().strftime("%m-%d_%H-%M-%S")

    print('---------------------------------------------')
    print('Training:')
    print('---------------------------------------------')
    print()
    optimizer = SNNOptimizer(snn, dataset, config)
    optimizer.optimize()

    print()
    print('---------------------------------------------')
    print('Selecting (of the model for final evaluation):')
    print('---------------------------------------------')
    print()
    num_of_selection_tests = config.number_of_selection_tests
    config.use_masking_regularization = False
    score_valid_to_model_loss = {}
    for i in range(num_of_selection_tests):
        loss_of_selected_model = change_model(config, start_time_string, num_of_selction_iteration=i)

        if config.case_base_for_inference:
            dataset: FullDataset = FullDataset(config.case_base_folder, config, training=False, model_selection=True)
        else:
            dataset: FullDataset = FullDataset(config.training_data_folder, config, training=False, model_selection=True)
        dataset.load()
        dataset = Representation.convert_dataset_to_baseline_representation(config, dataset)

        snn = initialise_snn(config, dataset, False)

        inference = Inference(config, snn, dataset)
        curr_model_score = inference.infer_test_dataset()

        score_valid_to_model_loss[curr_model_score] = loss_of_selected_model

    print("score_valid_to_model_loss: ", score_valid_to_model_loss)

    print()
    print('---------------------------------------------')
    print('Inference:')
    print('---------------------------------------------')
    print()

    max_score = max(list(score_valid_to_model_loss.keys()))
    min_loss = score_valid_to_model_loss[max_score]
    print("Model with the following loss is selected for the final evaluation:", min_loss)

    change_model(config, start_time_string, get_model_by_loss_value=min_loss)

    if config.case_base_for_inference:
        dataset: FullDataset = FullDataset(config.case_base_folder, config, training=False)
    else:
        dataset: FullDataset = FullDataset(config.training_data_folder, config, training=False)

    dataset.load()
    dataset = Representation.convert_dataset_to_baseline_representation(config, dataset)

    snn = initialise_snn(config, dataset, False)

    inference = Inference(config, snn, dataset)
    inference.infer_test_dataset()
def main():
    config = Configuration()

    # Define different version of original configuration
    #config_2 = copy(config)
    #config_2.hyper_file = config_2.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_2_a.json'  # wie Standard, aber owl2vec als Graph Features added
    config_3 = copy(config)
    config_3.hyper_file = config_3.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_2_b.json'  # wie Standard, aber Linear transformation an
    config_4 = copy(config)
    config_4.hyper_file = config_4.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_2_c.json'  # wie Standard, aber nur Context Ausgabe

    ####
    '''
    config_2 = copy(config)
    config_2.batch_distribution = {
        BatchSubsetType.DISTRIB_BASED_ON_DATASET: 0.75,
        BatchSubsetType.EQUAL_CLASS_DISTRIB: 0.25
        }
    
    config_3 = copy(config)
    config_3.hyper_file = config_3.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_2.json' # Owl2vec after 2DCNN Removed, film on
    config_4 = copy(config)
    config_4.hyper_file = config_4.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_3.json'  # Owl2vec after 2DCNN Removed, film off
    config_5 = copy(config)
    config_5.hyper_file = config_5.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_4.json'  # wie Standard, aber Gradient Cap 1
    config_6 = copy(config)
    config_6.hyper_file = config_6.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_5.json'  # wie Standard, aber 256,128,64
    config_7 = copy(config)
    config_7.hyper_file = config_7.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_6.json'  # wie Standard, aber 512,256,128
    config_8 = copy(config)
    config_8.hyper_file = config_8.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_7.json'  # wie Standard, aber 128,64,32
    config_9 = copy(config)
    config_9.hyper_file = config_9.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_8.json'  # wie Standard, aber 256,128,128
    config_10 = copy(config)
    config_10.hyper_file = config_10.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_9.json'  # wie Standard, aber 128,128,128, FC 386-256, CNN2d 128,64,3
    config_11 = copy(config)
    config_11.hyper_file = config_11.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_10.json'  # wie Standard, aber 128,64,64, FC 386-256, CNN2d 128,64,3
    config_12 = copy(config)
    config_12.hyper_file = config_12.hyper_file_folder + 'cnn2d_withAddInput_Graph_o1_GlobAtt_o2_2_HO_11.json'  # wie Standard, aber 256,128,128 nur mit allem aktiviert
    '''
    '''
    config_3 = copy(config)
    config_3.hyper_file = config_3.hyper_file_folder + 'cnn2d_with_graph_test_Readout_WOowl2vec.json'
    config_4 = copy(config)
    config_4.hyper_file = config_4.hyper_file_folder + 'cnn2d_with_graph_test_Readout_lrSmaller.json'
    config_5 = copy(config)
    config_5.hyper_file = config_5.hyper_file_folder + 'cnn2d_with_graph_test_Readout_WOAttributeWise.json'
    '''
    #list_of_configs = [config_3, config_4, config_5, config_6, config_7, config_8, config_9,config_10, config_11]
    list_of_configs = [config, config_3, config_4]
    #list_of_configs = [config, config_2, config_3,config_4,config_5, config_6,config_7,config_8,config_9,config_10,config_11]

    for i, config in enumerate(list_of_configs):
        print("Run number of config:", i)
        config.print_detailed_config_used_for_training()

        dataset = FullDataset(config.training_data_folder,
                              config,
                              training=True,
                              model_selection=True)
        dataset.load()
        dataset = Representation.convert_dataset_to_baseline_representation(
            config, dataset)

        checker = ConfigChecker(config, dataset, 'snn', training=True)
        checker.pre_init_checks()

        snn = initialise_snn(config, dataset, True)
        snn.print_detailed_model_info()

        if config.print_model:
            tf.keras.utils.plot_model(snn.encoder.model,
                                      to_file='model.png',
                                      show_shapes=True,
                                      expand_nested=True)

        checker.post_init_checks(snn)

        start_time_string = datetime.now().strftime("%m-%d_%H-%M-%S")

        print('---------------------------------------------')
        print('Training:')
        print('---------------------------------------------')
        print()
        optimizer = SNNOptimizer(snn, dataset, config)
        optimizer.optimize()

        print()
        print('---------------------------------------------')
        print('Evaluation of the current config:')
        print('---------------------------------------------')
        print()
        num_of_selection_tests = config.number_of_selection_tests
        score_valid_to_model_loss = {}
        for i in range(num_of_selection_tests):
            loss_of_selected_model = change_model(config,
                                                  start_time_string,
                                                  num_of_selction_iteration=i)

            if config.case_base_for_inference:
                dataset: FullDataset = FullDataset(config.case_base_folder,
                                                   config,
                                                   training=False,
                                                   model_selection=True)
            else:
                dataset: FullDataset = FullDataset(config.training_data_folder,
                                                   config,
                                                   training=False,
                                                   model_selection=True)
            dataset.load()
            dataset = Representation.convert_dataset_to_baseline_representation(
                config, dataset)

            snn = initialise_snn(config, dataset, False)

            inference = Inference(config, snn, dataset)
            curr_model_score = inference.infer_test_dataset()

            score_valid_to_model_loss[
                curr_model_score] = loss_of_selected_model

        # loop to sum all values to compute the mean:
        res = 0
        for val in score_valid_to_model_loss.values():
            res += val
        loss_mean = res / len(score_valid_to_model_loss)

        for val in score_valid_to_model_loss.keys():
            res += val
        mean_score = res / len(score_valid_to_model_loss)

        # printing result
        print("Run: ", i, " loss mean:" + str(loss_mean),
              " score mean: " + str(mean_score))
        print("Run: ", i, " score_valid_to_model_loss:",
              score_valid_to_model_loss)
        '''