def start_deezer_keepalive(): global _keepalive_timer test_deezer_login() _keepalive_timer = threading.Timer( 60.0 * config.getint('deezer', 'keepalive'), start_deezer_keepalive) _keepalive_timer.start()
add_to_playlist: True|False (add to mpd playlist) create_zip: True|False (create a zip for the playlist) """ user_input = request.get_json(force=True) desc = "Downloading Spotify playlist" task = sched.enqueue_task(desc, "download_spotify_playlist_and_queue_and_zip", playlist_name=user_input['playlist_name'], playlist_id=user_input['playlist_url'], add_to_playlist=user_input['add_to_playlist'], create_zip=user_input['create_zip']) return jsonify({ "task_id": id(task), }) @atexit.register def stop_workers(): sched.stop_workers() stop_deezer_keepalive() start_deezer_keepalive() sched.run_workers(config.getint('threadpool', 'workers')) if __name__ == '__main__': app.run(host=config['http']['host'], port=config['http'].getint('port'), debug=config['http'].getboolean('debug'), use_reloader=False)
add_to_playlist: True|False (add to mpd playlist) create_zip: True|False (create a zip for the playlist) """ user_input = request.get_json(force=True) desc = "I'm working on your Spotify playlist" task = sched.enqueue_task(desc, "download_spotify_playlist_and_queue_and_zip", playlist_name=user_input['playlist_name'], playlist_id=user_input['playlist_url'], add_to_playlist=user_input['add_to_playlist'], create_zip=user_input['create_zip']) return jsonify({ "task_id": id(task), }) if config.getint('deezer', 'keepalive', fallback=0) > 0: start_deezer_keepalive() sched.run_workers(config.getint('threadpool', 'workers')) @atexit.register def stop_workers(): sched.stop_workers() stop_deezer_keepalive() if __name__ == '__main__': app.run(port=5000, debug=True, use_reloader=False)
from sqlalchemy import select, and_, not_ import logging from Test import Test import db from configuration import config maxKeyLength = config.getint('db', 'MaxKeyLength') class UsedTest(Test): def run(self, key, testRun, keyReference, client, makePerm=True): comp = self.comparator(key) lenComp = len(str(comp)) if lenComp > maxKeyLength: outputText='The ' + self.compare + ' which should be tested is ' + lenComp + ' bit long, this is too long for UsedModulo. Increase MaxKeyLength.' logging.warning(outputText) status = 0 return status, outputText, [] connection=self.engine.connect() s = select([db.usedTable.c.hash]).where(and_(db.usedTable.c.hash == comp, db.usedTable.c.test == self.test)) if connection.execute(s).first() is None: status =1 outputText = 'The ' + self.compare + ' has not been used before.' revokeKeyReference=[] else: s = select([db.usedTable.c.test_run]).where(
shared = getShared() #start executing the user commands if options.reset: resetDB() initAllTests(engine, shared) exit() if options.result: result = Result(engine, options.result, client) print result.getAll() exit() if options.file: cores = min(config.getint('keycheck', 'NumberCores'), len(filenames)) pool = ExitPool(cores, initWorker, [testSet, client, options.makePerm, options.verbose, shared], exitWorker) result=pool.map(test, filenames, chunksize=1) pool.close() pool.join() if options.globalTest: tester = Tester(testSet, engine, shared) result=[doTest(tester, None, None, None, None, client, options.makePerm, options.verbose, engine)] tester.release() for s in result: print s
"use_gpu") and torch.cuda.is_available() # paths def mkdir(path): try: os.makedirs(path) except OSError: pass output_path = config.get("testing", "output_path") mkdir(output_path) # models encoder = NeuralNet(config.getint("dataset", "patch_size") * config.getint("dataset", "patch_size") * 3, 100, 10, activation=nn.Tanh) # load the state state_path = config.get("testing", "state_path") encoder.load_state_dict(torch.load(state_path)) # move to gpu if needed if use_gpu: encoder = encoder.to(torch.device("cuda:0")) data_path = config.get("testing", "data_path") temp_path = config.get("testing", "temp_path")
# KMeansconstants use_gpu = config.getboolean("training", "use_gpu") and torch.cuda.is_available() # paths output_path = config.get("training", "output_path") state_path = os.path.join(output_path, "states") for path in [output_path, state_path]: try: os.makedirs(path) except OSError: pass # models encoder = NeuralNet(config.getint("dataset", "patch_size") * config.getint("dataset", "patch_size") * 3, 100, 10, activation=nn.Tanh) decoder = NeuralNet(10, 100, config.getint("dataset", "patch_size") * config.getint("dataset", "patch_size") * 3, activation=nn.Tanh, activate_last=False) # move to gpu if needed if use_gpu: encoder = encoder.to(torch.device("cuda:0"))
def initDB(): global metadata metadata = MetaData() engine = getEngine() maxKeyLength = config.getint('db', 'MaxKeyLength') global clientTable global testTable global testSetTable global testRunTable global testResultTable global revokeKeysTable global usedTable global keyStorageTable global smallFactorTable global commonGCDTable clientTable = Table('Client', metadata, Column('name', String(40), primary_key=True), Column('test_set', None, ForeignKey('Test_Set.id')), Column('admin', Boolean, nullable=False, default=False), ) testTable = Table('Test', metadata, Column('name', String(20), primary_key=True), Column('test_set', None, ForeignKey('Test_Set.id'), primary_key=True), Column('type', Integer, default = 0, nullable=False), Column('parameter', Integer, default=0), ) testSetTable = Table('Test_Set', metadata, Column('id', Integer, Sequence('Test_Set_id_seq'), primary_key=True), Column('description', String(400)) ) testRunTable = Table('Test_Run', metadata, Column('id', Integer, Sequence('Test_Run_id_seq'), primary_key=True), Column('key_reference', Integer), Column('client', None, ForeignKey('Client.name'), nullable = False), Column('key_type', String(20)), Column('key_format', String(20)), Column('test_set', None, ForeignKey('Test_Set.id')), Column('started', DateTime), Column('completed', DateTime), ) testResultTable = Table('Test_Result', metadata, Column('test_run', None, ForeignKey('Test_Run.id'), primary_key=True), Column('test', None, ForeignKey('Test.name'), primary_key=True), Column('status', Integer, nullable=False, default=0), Column('output', String(400)), ) revokeKeysTable = Table('Revoke_Keys', metadata, Column('test_run', None, ForeignKey('Test_Run.id'), autoincrement=False, primary_key=True), Column('test', None, ForeignKey('Test.name'), autoincrement=False, primary_key=True), Column('revoke_key', None, ForeignKey('Test_Run.id'), autoincrement=False, primary_key=True), ) usedTable = Table('Used', metadata , Column('hash', String(maxKeyLength)), Column('test', String(20), primary_key=True, autoincrement=False), Column('test_run', None, ForeignKey('Test_Run.id'), primary_key=True, autoincrement=False), Column('key_reference', Integer), Column('client', None, ForeignKey('Client.name')), ) keyStorageTable = Table('Key_Storage', metadata , Column('test_run', None, ForeignKey('Test_Run.id'), primary_key=True, autoincrement=False), Column('client', None, ForeignKey('Client.name')), Column('key_reference', Integer), Column('modulus', String(maxKeyLength)), Column('exponent', Integer)) smallFactorTable = Table('Small_Factor', metadata , Column('up_to', BigInteger, primary_key=True, autoincrement=False), Column('product', Text(2**32-1)), ) commonGCDTable = Table('Common_GCD', metadata , Column('product', Text(2**32-1)), Column('id', Integer, Sequence('Common_GCD_id_seq'), primary_key=True) ) metadata.create_all(engine)