Example #1
0
def run_eval_mend():
    img = cv2.imread('road-car.png')[np.newaxis, :, :, :]
    img = np.pad(img, ((0, 0), (32, 32), (32, 32), (0, 0)), 'reflect')
    # mask = cv2.imread('road-label.png')[np.newaxis, :, :, :]
    mask = cv2.imread('road-cloud0.png')[np.newaxis, :, :, :]
    mask = np.pad(mask, ((0, 0), (32, 32), (32, 32), (0, 0)), 'reflect')[:, :, :, 0:1]

    threshold = 244
    mask[mask < threshold] = 0
    mask[mask >= threshold] = 255

    # cv2.imshow('', mask[0])
    # cv2.waitKey(5432)
    eval_list = [img, mask, img, mask]

    from mod_mend_dila import init_train
    C = Config('mod_mend_dila')
    from mod_mend_nres import init_train
    C = Config('mod_mend_nres')
    inp_ground, inp_mask01, inp_grdbuf, inp_mskbuf, fetch, eval_fetch = init_train()

    C.size = img.shape[1]
    sess = mod_util.get_sess(C)
    mod_util.get_saver_logger(C, sess)
    print("||Training Check")
    eval_feed_dict = {inp_ground: eval_list[0],
                      inp_mask01: eval_list[1],
                      inp_grdbuf: eval_list[2],
                      inp_mskbuf: eval_list[3], }
    img_util.get_eval_img(mat_list=sess.run(eval_fetch, eval_feed_dict), channel=3,
                          img_path="%s/eval-%08d.jpg" % ('temp', 0))
Example #2
0
def run_eval_haze():
    img = cv2.imread('road-thin.png')[np.newaxis, :, :, :]
    img = np.pad(img, ((0, 0), (32, 32), (32, 32), (0, 0)), 'reflect')
    eval_list = [img, np.zeros_like(img[:, :, :, 0:1])]
    from mod_haze_unet import init_train
    inp_ground, inp_mask01, train_fetch, eval_fetch = init_train()

    C = Config('mod_haze_unet')
    C.size = img.shape[1]
    sess = mod_util.get_sess(C)
    mod_util.get_saver_logger(C, sess)
    print("||Training Check")
    eval_feed_dict = {inp_ground: eval_list[0],
                      inp_mask01: eval_list[1], }
    img_util.get_eval_img(mat_list=sess.run(eval_fetch, eval_feed_dict), channel=3,
                          img_path="%s/eval-%08d.jpg" % ('temp', 0))