AdaptiveGreedy(deepcopy(base_algorithm), nchoices=nchoices, decay_type='threshold'), AdaptiveGreedy(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior, decay_type='percentile', decay=0.9997), AdaptiveGreedy(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior, active_choice='weighted', decay_type='percentile', decay=0.9997), BootstrappedTS(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior), BootstrappedUCB(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior), SoftmaxExplorer(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior) ] model_names_opts = [ "adaptive_greedy_thres", "adaptive_greedy_perc", "adaptive_active_greedy", "bootstrapped_ts", "bootstrapped_ucb", "softmax" ] '''
X, y = parse_data("loc_9.txt") nchoices = y.shape[1] base_algorithm = SGDClassifier(random_state=123, loss='log') beta_prior = ( (3, 7), 2 ) # until there are at least 2 observations of each class, will use prior Beta(3, 7) ## The base algorithm is embedded in different metaheuristics bootstrapped_ucb = BootstrappedUCB(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior, batch_train=True) bootstrapped_ts = BootstrappedTS(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior, batch_train=True) one_vs_rest = SeparateClassifiers(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior, batch_train=True) epsilon_greedy = EpsilonGreedy(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior, batch_train=True) epsilon_greedy_nodecay = EpsilonGreedy(deepcopy(base_algorithm), nchoices=nchoices, beta_prior=beta_prior, decay=None, batch_train=True) adaptive_greedy_thr = AdaptiveGreedy(deepcopy(base_algorithm),