Example #1
0
    def __init__(self, bfs, gain, trajectory, tau, 
                 add_to_goals=None, **kwargs): 
        """
        bfs int: the number of basis functions per DMP
        gain float: the PD gain while following a DMP trajectory
        trajectory np.array: the time series of points to follow
                             [DOFs, time], with a column of None
                             wherever the pen should be lifted
        tau float: the time scaling term
        add_to_goals np.array: floats to add to the DMP goals
                               used to scale the DMPs spatially
        """

        Control_OSC.__init__(self, **kwargs)

        self.bfs = bfs
        self.gain = gain
        self.gen_dmps(trajectory)
        self.tau = tau
        self.target,_,_ = self.dmps.step(tau=self.tau)

        if add_to_goals is not None: 
            for ii, dmp in enumerate(self.dmp_sets):
                dmp.goal[0] += add_to_goals[ii*2]
                dmp.goal[1] += add_to_goals[ii*2+1]

        self.num_seq = 0

        self.done = False
        self.not_at_start = True
Example #2
0
    def __init__(self, dt, gain, trajectory, **kwargs):

        Control_OSC.__init__(self, **kwargs)

        self.dt = dt
        self.gain = gain
        self.gen_trajectories(trajectory)
        self.target = np.array([self.y_des[0](0.0), self.y_des[1](0.0)])

        self.num_seq = 0
        self.time = 0.0

        self.done = False
        self.not_at_start = True
Example #3
0
    def __init__(self, dt, gain, trajectory, **kwargs): 

        Control_OSC.__init__(self, **kwargs)

        self.dt = dt
        self.gain = gain
        self.gen_trajectories(trajectory)
        self.target = np.array([self.y_des[0](0.0), self.y_des[1](0.0)])

        self.num_seq = 0
        self.time = 0.0

        self.done = False
        self.not_at_start = True