Example #1
0
    def c_d_w_b_yn1(self, c_d_yn, y_n, y_n_1, w, is_c_d_yn1=1):
        """
        stride, padding are both the integer value in the feed forward case.
        get derivative of cost w.r.t. weight, bias, prev_layer.

        ARGUMENT:
            c_d_yn      (batch) x (channel_n) x (height) x (width)
            y_n         (batch) x (channel_n) x (height) x (width)
            y_n_1       (batch) x (channel_n_1) x (height') x (width')
            w           (channel_n_1) x (channel_n) x (kern) x (kern)
        """
        c_d_xn = self._c_d_xn(c_d_yn, y_n)
        c_d_b = np.sum(c_d_xn, axis=(0,2,3))
        ####  c_d_w  ####
        ##  y_n_1 (*) flipped(c_d_xn)
        #   patch_stride = stride
        #   padding = padding
        #   slide_stride = 1
        c_d_w = slid.slid_win_4d_flip(np.swapaxes(y_n_1,0,1), np.swapaxes(c_d_xn,0,1), 
                1, self.stride, self.padding, slid.convolution())
        assert c_d_w.shape == w.shape
        ####  c_d_yn1  ####
        ##  c_d_xn (*) w ##
        #   patch_stride = 1/stride
        #   padding = (kern-padding-1)/stride
        #   slide_stride = 1/stride
        pad2 = Fraction(w.shape[-1] - self.padding - 1, self.stride)
        c_d_yn1 = slid.slid_win_4d_flip(c_d_xn, w[:,:,::-1,::-1], Fraction(1, self.stride), 
                Fraction(1, self.stride), pad2, slid.convolution())
        assert c_d_yn1.shape == y_n_1.shape
        return c_d_w, c_d_b, c_d_yn1
Example #2
0
 def act_forward(self, prev_layer, _, __):
     """
     input and output have the same number of channels
     """
     batch, channel = prev_layer.shape[0:2]
     pseudo_kern = np.zeros((channel, channel, self.kern, self.kern))
     return slid.slid_win_4d_flip(prev_layer, pseudo_kern, self.stride, 1, self.padding, slid.pool_ff())
Example #3
0
 def c_d_w_b_yn1(self, c_d_yn, y_n, y_n_1, _, is_c_d_yn1=None):
     """
     NO derivative of w and b
     """
     batch, channel = y_n_1.shape[0:2]
     pseudo_kern = np.zeros((channel, channel*2, self.kern, self.kern))
     yn_zip = np.concatenate((y_n,c_d_yn.reshape(y_n.shape)), axis=1)    # double the channel
     pd = Fraction(self.kern - self.padding - 1, self.stride)
     ps = ss = Fraction(1, self.stride)
     c_d_yn1 = slid.slid_win_4d_flip(yn_zip, pseudo_kern, ss, ps, pd, slid.pool_bp(y_n_1))
     return None, None, c_d_yn1
Example #4
0
 def act_forward(self, prev_layer, w, b):
     """
     NOTE:
         w is actually the flipped kernel:
         y = x (*) kernel = x (*) flipped(w)
     ARGUMENTS:
         prev_layer:     (batch) x (channel_in) x (height) x (width)
         w:              (channel_in) x (channel_out) x (kernel) x (kernel)
         b:              (channel_out)
     OUTPUT:
         (batch) x (channel_out) x (height') x (width')
         please refer to slid_win_4d_flip for height' and width'
     """
     ret = slid.slid_win_4d_flip(prev_layer, np.swapaxes(w, 0, 1), 
             self.stride, 1, self.padding, slid.convolution())
     b_exp = b[np.newaxis, :, np.newaxis, np.newaxis]
     return np.clip(ret+b_exp, 0, np.finfo(np.float64).max)    # ReLU