Example #1
0
def aug_labelme(filepath, jsonpath, augs=None, num=0, yamlFilePath=''):
    """
    augs: ['flip','noise','affine','rotate','...']
    """
    default_augs = ['noise', 'rotation', 'trans', 'flip', 'zoom']
    if augs is None:
        augs = ['noise', 'rotation', 'trans', 'flip', 'zoom']

    # elif not isinstance(augs,list):
    else:
        if not isinstance(augs, list):
            try:
                augs = list(str(augs))
            except:
                raise ValueError(
                    "parameter:aug's type is wrong. expect a string or list,got {}"
                    .format(str(type(augs))))
        # else:
        augs = list(set(augs).intersection(set(default_augs)))

        if len(augs) > 0 and augs is not None:
            pass
        else:
            logger.warning(
                'augumentation method is not supported.using default augumentation method.'
            )
            augs = ['noise', 'rotation', 'trans', 'flip', 'zoom']

    # l = np.random.randint(2,size=len(augs)).tolist()

    if 'flip' in augs:
        augs.remove('flip')
        augs.append('flip')

    l = np.random.randint(2, size=len(augs))

    if np.sum(l) == 0:
        l[0] = 1

    l[l != 1] = 1

    l = l.tolist()
    # l = [0, 0, 0, 1, 0]     # for test

    p = list(zip(augs, l))

    img = filepath
    # processedImg = jsonpath
    if os.path.exists(yamlFilePath):
        processedImg = processorWithLabel(jsonpath, yamlFilePath, flag=True)
    else:
        processedImg = jsonpath
    # print("======================={}".format(np.max(processedImg)))

    for i in p:
        # if i[0]!='flip':
        if i[1] == 1:
            if i[0] == 'noise':
                n = imgNoise(img,
                             processedImg,
                             flag=False,
                             labelFile=yamlFilePath)
                tmp = n['noise']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del n, tmp

            elif i[0] == 'rotation':
                angle = random.randint(-45, 45)
                r = imgRotation(img,
                                processedImg,
                                flag=False,
                                angle=angle,
                                labelFile=yamlFilePath)
                tmp = r['rotation']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del r, tmp

            elif i[0] == 'trans':
                t = imgTranslation(img,
                                   processedImg,
                                   flag=False,
                                   labelFile=yamlFilePath)
                tmp = t['trans']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del t, tmp

            elif i[0] == 'zoom':
                zoomFactor = random.uniform(0.8, 1.8)
                # print("==========2============={}".format(np.max(processedImg)))
                z = imgZoom(img,
                            processedImg,
                            zoomFactor,
                            flag=False,
                            labelFile='')
                # print(type(z))
                tmp = z['zoom']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del z, tmp

            elif i[0] == 'flip':
                imgList = []
                processedImgList = []

                f = imgFlip(img,
                            processedImg,
                            flag=False,
                            labelFile=yamlFilePath)

                tmp = f['h_v']
                imgList.append(tmp.oriImg)
                processedImgList.append(tmp.processedImg)

                tmp = f['h']
                imgList.append(tmp.oriImg)
                processedImgList.append(tmp.processedImg)

                tmp = f['v']
                imgList.append(tmp.oriImg)
                processedImgList.append(tmp.processedImg)

                img, processedImg = imgList, processedImgList

                del tmp, f, imgList, processedImgList

    parent_path = os.path.dirname(filepath)

    if os.path.exists(parent_path + os.sep + 'jsons_'):
        pass
    else:
        os.makedirs(parent_path + os.sep + 'jsons_')

    # fileName = jsonpath.split(os.sep)[-1].replace(".json", '')
    (_, fileName) = os.path.split(jsonpath)
    fileName = fileName.replace(".json", '')

    # io.imsave('D:\\testALg\\mask2json\\mask2json\\static\\jsons_\\12.png',processedImg*255)

    if isinstance(img, np.ndarray):
        io.imsave(
            parent_path + os.sep + 'jsons_' + os.sep + fileName +
            '_{}_assumble.jpg'.format(num), img)
        assumbleJson = getMultiShapes(parent_path + os.sep + 'jsons_' +
                                      os.sep + fileName +
                                      '_{}_assumble.jpg'.format(num),
                                      processedImg,
                                      flag=True,
                                      labelYamlPath=yamlFilePath)
        saveJsonPath = parent_path + os.sep + 'jsons_' + os.sep + fileName + '_{}_assumble.json'.format(
            num)
        with open(saveJsonPath, 'w') as f:
            f.write(assumbleJson)

        print("Done!")
        print("see here {}".format(parent_path + os.sep + 'jsons_'))

    elif isinstance(img, list):
        for i in range(0, len(img)):
            io.imsave(
                parent_path + os.sep + 'jsons_' + os.sep + fileName +
                '_{}_assumble{}.jpg'.format(num, i), img[i])
            assumbleJson = getMultiShapes(parent_path + os.sep + 'jsons_' +
                                          os.sep + fileName +
                                          '_{}_assumble{}.jpg'.format(num, i),
                                          processedImg[i],
                                          flag=True,
                                          labelYamlPath=yamlFilePath)
            saveJsonPath = parent_path + os.sep + 'jsons_' + os.sep + fileName + '_{}_assumble{}.json'.format(
                num, i)
            with open(saveJsonPath, 'w') as f:
                f.write(assumbleJson)

        print("Done!")
        print("see here {}".format(parent_path + os.sep + 'jsons_'))
Example #2
0
def aug_labelimg(filepath, xmlpath, augs=None, num=0, labelpath=''):
    default_augs = ['noise', 'rotation', 'trans', 'flip', 'zoom']
    if augs is None:
        augs = ['noise', 'rotation', 'trans', 'flip', 'zoom']

    # elif not isinstance(augs,list):
    else:
        if not isinstance(augs, list):
            try:
                augs = list(str(augs))
            except:
                raise ValueError(
                    "parameter:aug's type is wrong. expect a string or list,got {}"
                    .format(str(type(augs))))
        # else:
        augs = list(set(augs).intersection(set(default_augs)))

        if len(augs) > 0 and augs is not None:
            pass
        else:
            logger.warning(
                'augumentation method is not supported.using default augumentation method.'
            )
            augs = ['noise', 'rotation', 'trans', 'flip', 'zoom']

    # l = np.random.randint(2,size=len(augs)).tolist()

    if 'flip' in augs:
        augs.remove('flip')
        augs.append('flip')

    l = np.random.randint(2, size=len(augs))

    if np.sum(l) == 0:
        l[0] = 1

    l[l != 1] = 1

    l = l.tolist()
    # print(l)

    p = list(zip(augs, l))

    img = filepath
    # processedImg = xmlpath

    jsonpath = x2jConvert_pascal(xmlpath, filepath)
    # processedImg = processorWithLabel(jsonpath, labelpath, flag=True)
    if os.path.exists(labelpath):
        processedImg = processorWithLabel(jsonpath, labelpath, flag=True)
    else:
        processedImg = jsonpath
    # os.remove(jsonpath)

    for i in p:
        if i[1] == 1:
            if i[0] == 'noise':
                n = imgNoise(img, processedImg, flag=False)
                tmp = n['noise']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del n, tmp

            if i[0] == 'rotation':
                angle = random.randint(-10, 10)
                r = imgRotation(img, processedImg, flag=False, angle=angle)
                tmp = r['rotation']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del r, tmp

            elif i[0] == 'trans':
                t = imgTranslation(img, processedImg, flag=False, factor=0.1)
                tmp = t['trans']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del t, tmp

            elif i[0] == 'zoom':
                zoomFactor = random.uniform(0.8, 1.8)
                z = imgZoom(img, processedImg, zoomFactor, flag=False)
                tmp = z['zoom']
                img, processedImg = tmp.oriImg, tmp.processedImg

                del z, tmp

            elif i[0] == 'flip':
                imgList = []
                processedImgList = []

                f = imgFlip(img, processedImg, flag=False)

                tmp = f['h_v']
                imgList.append(tmp.oriImg)
                processedImgList.append(tmp.processedImg)

                tmp = f['h']
                imgList.append(tmp.oriImg)
                processedImgList.append(tmp.processedImg)

                tmp = f['v']
                imgList.append(tmp.oriImg)
                processedImgList.append(tmp.processedImg)

                img, processedImg = imgList, processedImgList

                del tmp, f, imgList, processedImgList

    parent_path = os.path.dirname(filepath)

    if os.path.exists(parent_path + os.sep + 'xmls_'):
        pass
    else:
        os.makedirs(parent_path + os.sep + 'xmls_')

    # fileName = jsonpath.split(os.sep)[-1].replace(".json", '')

    (_, fileName) = os.path.split(jsonpath)
    fileName = fileName.replace(".json", '')

    if isinstance(img, np.ndarray):
        io.imsave(
            parent_path + os.sep + 'xmls_' + os.sep + fileName +
            '_{}_assumble.jpg'.format(num), img)
        assumbleJson = getMultiShapes(parent_path + os.sep + 'xmls_' + os.sep +
                                      fileName +
                                      '_{}_assumble.jpg'.format(num),
                                      processedImg,
                                      flag=True,
                                      labelYamlPath=labelpath)
        saveJsonPath = parent_path + os.sep + 'xmls_' + os.sep + fileName + '_{}_assumble.json'.format(
            num)
        with open(saveJsonPath, 'w') as f:
            f.write(assumbleJson)

        j2xConvert(saveJsonPath)
        # os.remove(saveJsonPath)
        print("Done!")
        print("see here {}".format(parent_path + os.sep + 'xmls_'))
        # print("see here {}".format(saveJsonPath))

    elif isinstance(img, list):
        for i in range(0, len(img)):
            io.imsave(
                parent_path + os.sep + 'xmls_' + os.sep + fileName +
                '_{}_assumble{}.jpg'.format(num, i), img[i])
            assumbleJson = getMultiShapes(parent_path + os.sep + 'xmls_' +
                                          os.sep + fileName +
                                          '_{}_assumble{}.jpg'.format(num, i),
                                          processedImg[i],
                                          flag=True,
                                          labelYamlPath=labelpath)
            saveJsonPath = parent_path + os.sep + 'xmls_' + os.sep + fileName + '_{}_assumble{}.json'.format(
                num, i)
            with open(saveJsonPath, 'w') as f:
                f.write(assumbleJson)

            j2xConvert(saveJsonPath)
            os.remove(saveJsonPath)

        print("Done!")
        print("see here {}".format(parent_path + os.sep + 'xmls_'))
Example #3
0
def imgTranslation(oriImg: str,
                   oriLabel: str,
                   flag=True,
                   labelFile='',
                   factor=0.5):
    """
    image translation
    factor : Translation factor
    """
    if isinstance(oriImg, str):
        if os.path.exists(oriImg):
            img = io.imread(oriImg)
        else:
            raise FileNotFoundError('Original image not found')
    elif isinstance(oriImg, np.ndarray):
        img = oriImg
    else:
        logger.error('input {} type error'.format(imgFlip))
        return

    imgShape = img.shape

    if isinstance(oriLabel, str):
        if os.path.exists(labelFile):
            mask = processorWithLabel(oriLabel, labelFile, flag=True)
        else:
            mask = processor(oriLabel, flag=True)
    elif isinstance(oriLabel, np.ndarray):
        mask = oriLabel
    else:
        raise TypeError(
            "input parameter 'oriLabel' type {} is not supported".format(
                type(oriLabel)))

    trans_h = random.randint(0, int(factor * imgShape[1]))
    trans_v = random.randint(0, int(factor * imgShape[0]))

    trans_mat = np.float32([[1, 0, trans_h], [0, 1, trans_v]])

    transImg = cv2.warpAffine(img, trans_mat, (imgShape[1], imgShape[0]))
    transMask = cv2.warpAffine(mask, trans_mat, (imgShape[1], imgShape[0]))

    if flag:
        parent_path = os.path.dirname(oriLabel)

        if os.path.exists(parent_path + os.sep + 'jsons_'):
            pass
        else:
            os.makedirs(parent_path + os.sep + 'jsons_')
        fileName = oriLabel.split(os.sep)[-1].replace('.json', '')

        io.imsave(
            parent_path + os.sep + 'jsons_' + os.sep + fileName +
            '_translation.jpg', transImg)
        transMask_j = getMultiShapes(parent_path + os.sep + 'jsons_' + os.sep +
                                     fileName + '_translation.jpg',
                                     transMask,
                                     flag=True,
                                     labelYamlPath='')

        saveJsonPath = parent_path + os.sep + 'jsons_' + os.sep + fileName + '_translation.json'

        if transMask_j is not None:
            with open(saveJsonPath, 'w') as f:
                f.write(transMask_j)
        else:
            pass

    else:
        d = dict()
        d['trans'] = Ori_Pro(transImg, transMask)

        return d
Example #4
0
def imgRotation(oriImg: str,
                oriLabel: str,
                angle=30,
                scale=1,
                flag=True,
                labelFile=''):
    """
    旋转
    """
    logger.warning(
        'rotation may cause salt-and-pepper noise. in order to solve this issue, small objects may be missing!'
    )
    if isinstance(oriImg, str):
        if os.path.exists(oriImg):
            img = io.imread(oriImg)
        else:
            raise FileNotFoundError('Original image not found')
    elif isinstance(oriImg, np.ndarray):
        img = oriImg
    else:
        logger.error('input {} type error'.format(imgFlip))
        return

    imgShape = img.shape

    if isinstance(oriLabel, str):
        if os.path.exists(labelFile):
            mask = processorWithLabel(oriLabel, labelFile, flag=True)
        else:
            mask = processor(oriLabel, flag=True)
    elif isinstance(oriLabel, np.ndarray):
        mask = oriLabel
    else:
        raise TypeError(
            "input parameter 'oriLabel' type {} is not supported".format(
                type(oriLabel)))

    center = (0.5 * imgShape[1], 0.5 * imgShape[0])
    mat = cv2.getRotationMatrix2D(center, angle, scale)

    affedImg = cv2.warpAffine(img, mat, (imgShape[1], imgShape[0]))
    affedMask = cv2.warpAffine(mask, mat, (imgShape[1], imgShape[0]))

    if flag:
        parent_path = os.path.dirname(oriLabel)

        if os.path.exists(parent_path + os.sep + 'jsons_'):
            pass
        else:
            os.makedirs(parent_path + os.sep + 'jsons_')
        fileName = oriLabel.split(os.sep)[-1].replace('.json', '')

        io.imsave(
            parent_path + os.sep + 'jsons_' + os.sep + fileName +
            '_rotation.jpg', affedImg)

        affedMask_j = getMultiShapes(parent_path + os.sep + 'jsons_' + os.sep +
                                     fileName + '_rotation.jpg',
                                     affedMask,
                                     flag=True,
                                     labelYamlPath='')

        saveJsonPath = parent_path + os.sep + 'jsons_' + os.sep + fileName + '_rotation.json'

        if affedMask_j is not None:
            with open(saveJsonPath, 'w') as f:
                f.write(affedMask_j)
        else:
            pass

    else:
        d = dict()
        d['rotation'] = Ori_Pro(affedImg, affedMask)

        return d
Example #5
0
def imgNoise(oriImg: str, oriLabel: str, flag=True, labelFile=''):
    """
    see skimage.util.random_noise    
    """
    noise_type = ['gaussian', 'poisson', 's&p', 'speckle']

    l = np.random.randint(2, size=len(noise_type)).tolist()
    # print(l)
    p = list(zip(noise_type, l))

    if isinstance(oriImg, str):
        if os.path.exists(oriImg):
            img = io.imread(oriImg)
        else:
            raise FileNotFoundError('Original image not found')
    elif isinstance(oriImg, np.ndarray):
        img = oriImg
    else:
        logger.error('input type error')
        return

    for i in p:
        if i[1] != 0:
            img = snoise.random_noise(img, mode=i[0])

    img = np.array(img * 255).astype(np.uint8)

    if flag:
        # parent_path = os.path.dirname(oriImg)
        (parent_path, file_path) = os.path.split(oriImg)
        if os.path.exists(parent_path + os.sep + 'jsons_'):
            pass
        else:
            os.makedirs(parent_path + os.sep + 'jsons_')
        # fileName = oriImg.split(os.sep)[-1].replace('.json', '')
        fileName = os.path.splitext(file_path)[0]

        io.imsave(
            parent_path + os.sep + 'jsons_' + os.sep + fileName + '_noise.jpg',
            img)

        try:
            if isinstance(oriLabel, str):
                shutil.copyfile(
                    oriLabel, parent_path + os.sep + 'jsons_' + os.sep +
                    fileName + '_noise.json')

                base64code = imgEncode(parent_path + os.sep + 'jsons_' +
                                       os.sep + fileName + '_noise.jpg')

                with open(
                        parent_path + os.sep + 'jsons_' + os.sep + fileName +
                        '_noise.json', 'r') as f:
                    load_dict = json.load(f)

                load_dict['imageData'] = base64code

                with open(
                        parent_path + os.sep + 'jsons_' + os.sep + fileName +
                        '_noise.json', 'w') as f:
                    # json.dump(load_dict,parent_path+os.sep+'jsons_'+os.sep+fileName+'_noise.json')
                    f.write(json.dumps(load_dict))

            elif isinstance(oriLabel, np.ndarray):
                """
                labeled file can be an Image
                """
                noisedMask_j = getMultiShapes(parent_path + os.sep + 'jsons_' +
                                              os.sep + fileName + '_noise.jpg',
                                              oriLabel,
                                              flag=True,
                                              labelYamlPath=labelFile)
                with open(
                        parent_path + os.sep + 'jsons_' + os.sep + fileName +
                        '_noise.json', 'w') as f:
                    f.write(json.dumps(noisedMask_j))

        except Exception:
            print(traceback.format_exc())

    else:
        d = dict()
        # mask = processor(oriLabel,flag=True)
        if isinstance(oriLabel, str):
            if os.path.exists(labelFile):
                mask = processorWithLabel(oriLabel, labelFile, flag=True)
            else:
                mask = processor(oriLabel, flag=True)
        elif isinstance(oriLabel, np.ndarray):
            mask = oriLabel
        else:
            raise TypeError(
                "input parameter 'oriLabel' type {} is not supported".format(
                    type(oriLabel)))
        # print('======================')
        # print(np.max(mask))
        # print('======================')
        d['noise'] = Ori_Pro(img, mask)

        return d
Example #6
0
def imgFlip(oriImg: str,
            oriLabel: str,
            flip_list=[1, 0, -1],
            flag=True,
            labelFile=''):
    """
    flipList: flip type. see cv2.flip :
    1: 水平翻转 \n
    0: 垂直翻转 \n
    -1: 同时翻转 \n
    >>> import cv2
    >>> help(cv2.flip)
    """
    if isinstance(oriImg, str):
        if os.path.exists(oriImg):
            img = io.imread(oriImg)
        else:
            raise FileNotFoundError('Original image not found')
    elif isinstance(oriImg, np.ndarray):
        img = oriImg
    else:
        logger.error('input {} type error'.format(imgFlip))
        return

    try:
        if len(flip_list) > 1 and (1 in flip_list or 0 in flip_list
                                   or -1 in flip_list):

            if isinstance(oriLabel, str):
                if os.path.exists(labelFile):
                    mask = processorWithLabel(oriLabel, labelFile, flag=True)
                else:
                    mask = processor(oriLabel, flag=True)
            elif isinstance(oriLabel, np.ndarray):
                mask = oriLabel
            else:
                raise TypeError(
                    "input parameter 'oriLabel' type is not supported")
            # print(type(mask))
            h_ori = cv2.flip(img, 1)
            v_ori = cv2.flip(img, 0)
            h_v_ori = cv2.flip(img, -1)

            h_mask = cv2.flip(mask, 1) if 1 in flip_list else None
            v_mask = cv2.flip(mask, 0) if 0 in flip_list else None
            h_v_mask = cv2.flip(mask, -1) if -1 in flip_list else None
            """
            maybe dict or zip is better :)
            """

            if flag:
                parent_path = os.path.dirname(oriLabel)
                if os.path.exists(parent_path + os.sep + 'jsons_'):
                    pass
                else:
                    os.makedirs(parent_path + os.sep + 'jsons_')
                fileName = oriLabel.split(os.sep)[-1].replace('.json', '')

                io.imsave(
                    parent_path + os.sep + 'jsons_' + os.sep + fileName +
                    '_h.jpg', h_ori) if 1 in flip_list else do_nothing()
                io.imsave(
                    parent_path + os.sep + 'jsons_' + os.sep + fileName +
                    '_v.jpg', v_ori) if 0 in flip_list else do_nothing()
                io.imsave(
                    parent_path + os.sep + 'jsons_' + os.sep + fileName +
                    '_h_v.jpg', h_v_ori) if -1 in flip_list else do_nothing()

                h_j = getMultiShapes(
                    parent_path + os.sep + 'jsons_' + os.sep + fileName +
                    '_h.jpg',
                    h_mask,
                    flag=True,
                    labelYamlPath='') if h_mask is not None else None
                # h_j = getMultiShapes(parent_path+os.sep+'jsons_'+os.sep+fileName+'_h.jpg',h_mask,flag=True,labelYamlPath='D:\\testALg\\mask2json\\mask2json\\multi_objs_json\\info.yaml')
                v_j = getMultiShapes(
                    parent_path + os.sep + 'jsons_' + os.sep + fileName +
                    '_v.jpg',
                    v_mask,
                    flag=True,
                    labelYamlPath='') if v_mask is not None else None
                h_v_j = getMultiShapes(
                    parent_path + os.sep + 'jsons_' + os.sep + fileName +
                    '_h_v.jpg',
                    h_v_mask,
                    flag=True,
                    labelYamlPath='') if h_v_mask is not None else None

                for saveJsonPath in [
                        parent_path + os.sep + 'jsons_' + os.sep + fileName +
                        '_h.json', parent_path + os.sep + 'jsons_' + os.sep +
                        fileName + '_v.json', parent_path + os.sep + 'jsons_' +
                        os.sep + fileName + '_H_V.json'
                ]:

                    # if saveJsonPath is not None:
                    # print(saveJsonPath)
                    if saveJsonPath.endswith('_h.json'):
                        if h_j is not None:
                            with open(saveJsonPath, 'w') as f:
                                f.write(h_j)
                        else:
                            pass
                    elif saveJsonPath.endswith('_v.json'):
                        if v_j is not None:
                            with open(saveJsonPath, 'w') as f:
                                f.write(v_j)
                        else:
                            pass
                    elif saveJsonPath.endswith('_H_V.json'):
                        if h_v_j is not None:
                            with open(saveJsonPath, 'w') as f:
                                f.write(h_v_j)
                        else:
                            pass

                    rmQ.rm(saveJsonPath) if os.path.exists(
                        saveJsonPath) else do_nothing()

                return ""
            else:

                d = dict()
                d['h'] = Ori_Pro(h_ori, h_mask)
                d['v'] = Ori_Pro(v_ori, v_mask)
                d['h_v'] = Ori_Pro(h_v_ori, h_v_mask)

                return d

        else:
            logger.warning("<===== param:flip_list is not valid =====>")

    except Exception:
        # print(e)
        print(traceback.format_exc())
Example #7
0
def imgZoom(oriImg: str,
            oriLabel: str,
            size: float = 0,
            flag=True,
            labelFile=''):
    """
    size : The zoom factor along the axes, default 0.8~1.8
    """
    # pass
    if isinstance(oriImg, str):
        if os.path.exists(oriImg):
            img = io.imread(oriImg)
        else:
            raise FileNotFoundError('Original image not found')
    elif isinstance(oriImg, np.ndarray):
        img = oriImg
    else:
        logger.error('input {} type {} error'.format('oriImg', type(oriImg)))
        return

    try:
        size = float(size)
        # if size == 0.0:
        #     raise ValueError('zoom factor cannot be zero')
    except:
        logger.warning('input {} type error ,got {}.'.format(
            'size', type(size)))
        size = random.uniform(0.8, 1.8)
        size = round(size, 2)

    if size <= 0 or size == 1:
        size = random.uniform(0.8, 1.8)
        size = round(size, 2)

    resOri = _getZoomedImg(img, size)

    if isinstance(oriLabel, str):
        if os.path.exists(labelFile):
            # print(True)
            mask = processorWithLabel(oriLabel, labelFile, flag=True)
        else:
            mask = processor(oriLabel, flag=True)
    elif isinstance(oriLabel, np.ndarray):
        mask = oriLabel
    else:
        raise TypeError(
            "input parameter 'oriLabel' type {} is not supported".format(
                type(oriLabel)))

    maskImgs = _splitImg(mask)
    # print('========='+str(len(maskImgs)))
    resMask = np.zeros((resOri.shape[0], resOri.shape[1]))
    if len(maskImgs) > 0:
        for m in maskImgs:
            # print(np.max(m.img))
            res = _getZoomedImg(m.img, size)
            res[res > 0] = m.clasId
            res[res != m.clasId] = 0
            resMask += res
            # io.imsave('D:\\testALg\\mask2json\\mask2json\\static\\jsons_\\{}.png'.format(np.max(m.img)),resMask*255)
    resMask = resMask.astype(np.uint8)
    # io.imsave('D:\\testALg\\mask2json\\mask2json\\static\\jsons_\\12.png',resMask*255)
    # print(np.max(resMask))

    if np.max(resMask) == 0:
        logger.warning(
            'After zoom,none ROIs detected! Zoomfactor={} maybe too large.'.
            format(size))
        # return

    if flag:
        parent_path = os.path.dirname(oriLabel)
        if os.path.exists(parent_path + os.sep + 'jsons_'):
            pass
        else:
            os.makedirs(parent_path + os.sep + 'jsons_')
        fileName = oriLabel.split(os.sep)[-1].replace('.json', '')

        io.imsave(
            parent_path + os.sep + 'jsons_' + os.sep + fileName + '_zoom.jpg',
            resOri)

        zoomedMask_j = getMultiShapes(parent_path + os.sep + 'jsons_' +
                                      os.sep + fileName + '_zoom.jpg',
                                      resMask,
                                      flag=True,
                                      labelYamlPath=labelFile)
        saveJsonPath = parent_path + os.sep + 'jsons_' + os.sep + fileName + '_zoom.json'
        if zoomedMask_j is not None:
            with open(saveJsonPath, 'w') as f:
                f.write(zoomedMask_j)
            logger.info('Done! See {} .'.format(
                saveJsonPath)) if LOGFlag == 'True' else entity.do_nothing()
        else:
            pass

    else:
        d = dict()
        # print(resOri.shape)
        # io.imsave('D:\\testALg\\mask2json\\mask2json\\static\\jsons_\\13.png',resMask*255)
        d['zoom'] = Ori_Pro(resOri, resMask)
        return d