def main(): filename = sys.argv[1] model = sys.argv[2] sound = AudioSegment.from_file(filename) lenght_in_miliseconds = len(sound) sound = sound.set_frame_rate(16000) sound = sound.apply_gain(-18 - sound.dBFS) # Trying to normalize to 85 db # Note: When REPLAYGAIN_REFERENCE_LOUDNESS is not provided the *_GAIN tags are interpreted relative to an assumed target of -18 dBFS. max_db = 20 * math.log(sound.apply_gain(-18 - sound.dBFS).max, 10) print("The file was normalized so now it has {} db as peak value".format( round(max_db), 2)) silence = AudioSegment.silent(duration=5000) sound = silence + sound + silence sound.export(filename, format="wav") netA_path = "{}trained_model/{}/generator_ab.npz".format(ROOT_PATH, model) netB_path = "{}trained_model/{}/generator_ba.npz".format(ROOT_PATH, model) convert(netA_path, netB_path, filename) sound = AudioSegment.from_file(filename) sound = sound[len(silence):-len(silence)] padding_audio = AudioSegment.silent(duration=lenght_in_miliseconds - len(sound)) sound = sound + padding_audio sound.export(filename, format="wav")
def test_success(self): """ successful scenario """ import convertor, StringIO io = StringIO.StringIO() args = ["convertor.py", "sample.py", "--reports=n", "--output-format=parseable"] expected_result = "%s/sample.py:6:0: [C] More than one statement on a single line\n" % PROJECT_FOLDER convertor.convert(args, io) result = io.getvalue() self.assertEqual(expected_result, result)
def test_error(self): import convertor, StringIO help_text = "This is help test" convertor.HELP_TEXT = help_text original_parse_module_name = convertor.parse_module_name convertor.parse_module_name = MainTest.parse_module_name_mock io = StringIO.StringIO() convertor.convert([], io) result = io.getvalue() convertor.parse_module_name = original_parse_module_name expected_result = "Error: exception\n" + help_text self.assertEqual(expected_result, result)
def test_error(self): import convertor, StringIO help_text = "This is help test" convertor.HELP_TEXT = help_text original_parse_module_name = convertor.parse_module_name convertor.parse_module_name = MainTest.parse_module_name_mock io = StringIO.StringIO() convertor.convert([], io) result = io.getvalue() convertor.parse_module_name = original_parse_module_name expected_result = "Error: exception\n"+help_text self.assertEqual(expected_result, result)
def test_success(self): """ successful scenario """ import convertor, StringIO io = StringIO.StringIO() args = ["convertor.py", "sample.py", "--reports=n"] expected_result = """************* Module pylint_pycharm.sample %s/sample.py:6:6: [C0321(multiple-statements), ] More than one statement on a single line """ % PROJECT_FOLDER convertor.convert(args, io) result = io.getvalue() self.assertEqual(expected_result, result)
def test_success(self): """ successful scenario """ import convertor, StringIO io = StringIO.StringIO() args = [ "convertor.py", "sample.py", "--reports=n", "--output-format=parseable" ] expected_result = "%s/sample.py:6:0: [C] More than one statement on a single line\n" % PROJECT_FOLDER convertor.convert(args, io) result = io.getvalue() self.assertEqual(expected_result, result)
def main(): print("start to clean data") # load data file Csv_Dics = readfile() #print(Csv_Dics.keys()) Lists_Labeled_data = {} i = 0 for key in Csv_Dics.keys(): # data["Read_time_Bin"]=CategorizeData(data['x0_time_read_time_total'], cut_points, labels) print(key) data_binded = CategorizeData(Csv_Dics[key], 0) nameOfthefile = path_leaf(key) print(nameOfthefile) path = "/Users/rezakhoshkangini/Documents/Drexel_Documents/Work/Mat-Code/newExperiment_Trento/Sections/Sections_new_features/Labeled/" #data_binded=CategorizeData(data) #Clustring data_labaled, data_confid = Clustering_new(data_binded, i, nameOfthefile) WritCsv(data_confid, path + str('Conf_' + nameOfthefile)) # data_labaled=Culstring_Players(data_binded) TmpContiner = pd.DataFrame(data_labaled) Lists_Labeled_data[ i] = TmpContiner # adding all the labled data into a list #writing bindeded data to CSV file WritCsv(data_labaled, path + str('Result_' + nameOfthefile)) i = i + 1 # #calling classification class # Sub_Machine() Difrentiate_Labled_Data(Lists_Labeled_data) #converting csv file into arff Converted_Data_arff = convert()
def post(self): newtext = "" text = self.request.get('text') if text: newtext = convert(str(text)) self.render("convert.html", text=newtext)
def final_handler(callback_query): message = callback_query.message data = callback_query.data VALUTE_DICT['cur_to'] = data set_cur_to(cbr_currencies[data]) result = convert(int(RESULT_DICT["amount"]), RESULT_DICT["cur_from"], RESULT_DICT["cur_to"]) bot.send_message( message.chat.id, text=f'{RESULT_DICT["amount"]} {VALUTE_DICT["cur_from"]} в' f' {VALUTE_DICT["cur_to"]}:\n' f'{result} {VALUTE_DICT["cur_to"]}') bot.send_message( message.chat.id, text='Перевод завершен, для нового перевода отправь мне любое сообщение' ) update_state(message, START)
def main(**kwargs): if "lyrics" in kwargs: lyrics = kwargs['lyrics'] else: lyrics = "oo " if "notes" in kwargs: notes = list(map(int, kwargs['notes'].split(","))) else: notes = [0] if "dur" in kwargs: durations = list(map(float, kwargs['dur'].split(","))) else: durations = [1] if 'file' in kwargs: filename = kwargs['file'] else: filename = 'output.wav' if 'tempo' in kwargs: tempo = kwargs['tempo'] else: tempo = 100 print(kwargs) if 'lang' in kwargs: languageCode = kwargs['lang'] else: languageCode = "es" if 'scale' in kwargs: scale = list(map(int, kwargs['scale'].split(","))) else: scale = [0, 2, 4, 5, 7, 9, 11] # Major Scale if 'root' in kwargs: root_note = int(kwargs['root']) else: root_note = 0 # C is the root note if 'octave' in kwargs: octave = int(kwargs['octave']) else: octave = 5 # C is the root note if 'model' in kwargs: renderizeVoice(filename, lyrics, notes, durations, tempo, scale, root_note, octave, languageCode) model = kwargs['model'] sound = AudioSegment.from_file(filename) lenght_in_miliseconds = len(sound) silence = AudioSegment.silent(duration=5000) sound = silence + sound + silence sound = sound.set_frame_rate(16000) sound = sound.apply_gain(-18 - sound.dBFS) # Trying to normalize to 85 db # Note: When REPLAYGAIN_REFERENCE_LOUDNESS is not provided the *_GAIN tags are interpreted relative to an assumed target of -18 dBFS. max_db = 20 * math.log(sound.apply_gain(-18 - sound.dBFS).max, 10) print( "The file was normalized so now it has {} db as peak value".format( round(max_db), 2)) sound.export(filename, format="wav") netA_path = "{}trained_model/{}/generator_ab.npz".format( ROOT_PATH, model) netB_path = "{}trained_model/{}/generator_ba.npz".format( ROOT_PATH, model) convert(netA_path, netB_path, filename) sound = AudioSegment.from_file(filename) sound = sound[len(silence):-len(silence)] padding_audio = AudioSegment.silent(duration=lenght_in_miliseconds - len(sound)) sound = sound + padding_audio sound.export(filename, format="wav") else: renderizeVoice(filename, lyrics, notes, durations, tempo, scale, root_note, octave, languageCode)