Example #1
0
def test_pdf_bivariate():
    # the dim > 2 case is tested when we fitted the copula. Test the bivariate case here
    cop = ClaytonCopula(-0.3075057, 2)

    u = np.array([
        [0.199296, 0.645346],
        [0.135279, 0.30006]
    ])
    assert_array_almost_equal(cop.pdf(u), [1.152112, 1.018026])
Example #2
0
def test_pdf_bivariate():
    # the dim > 2 case is tested when we fitted the copula. Test the bivariate case here
    cop = ClaytonCopula(-0.3075057, 2)

    u = np.array([
        [0.199296, 0.645346],
        [0.135279, 0.30006]
    ])
    assert_array_almost_equal(cop.pdf(u), [1.152112, 1.018026])
Example #3
0
def test_clayton_random_generates_correctly(copula):
    n = 10
    assert copula.random(n).shape == (n, copula.dim)

    expected = (n, 2)
    cop = ClaytonCopula(0)
    assert cop.random(n).shape == expected

    cop.params = 1.5
    assert cop.random(n).shape == expected
Example #4
0
def test_clayton_random_generates_correctly(copula):
    n = 10
    assert copula.random(n).shape == (n, copula.dim)

    expected = (n, 2)
    cop = ClaytonCopula(0)
    assert cop.random(n).shape == expected

    cop.params = 1.5
    assert cop.random(n).shape == expected
Example #5
0
def allclayton(x, y, thetaInit=1.4):
    sample = len(x)

    # Convert to normall #
    result = allnorm(x, y)

    u = result["u"]
    v = result["v"]
    sigma = result["sigma"]
    hes_norm = result["hes_norm"]

    # x - mean, y - mean #
    xbar = x - sigma[2]
    ybar = y - sigma[3]

    # Calculate theta #
    data = []
    for i in range(len(u)):
        data.append([u[i][0], v[i][0]])
   
    data = np.array(data)
    cop = ClaytonCopula(theta=thetaInit)
    cop.fit(data)
    theta = cop.params  
    
    # Save frequent calculations #
    v_pow_minus_theta = v ** (-theta)
    u_pow_minus_theta = u ** (-theta)
    minus_sample = -sample

    # Find logLikelihood of theta #
    cop1 = (sample * np.log(1 + theta)) - ((theta + 1) * np.sum(np.log(u * v)))  - ((np.sum(np.log((u ** (-theta)) +  (v ** (-theta)) -1))) * (2 + (1/theta))) - (0.5 * sample * np.log(2 * pi * (sigma[0] ** 2))) - (0.5 * np.sum(xbar ** 2) / (sigma[0] ** 2)) - (0.5 * sample * np.log(2 * pi * (sigma[1] ** 2))) - (0.5 * np.sum(ybar ** 2) / (sigma[1] ** 2))
    
    # Calculate hessian of log-copula's density #
    hes_cop = (minus_sample / ((theta + 1)**2)) -2 * (theta ** (-3) * np.sum(np.log(u_pow_minus_theta + v_pow_minus_theta - 1))) - 2*(theta ** (-2)) * np.sum(np.divide(np.multiply(np.log(u), u_pow_minus_theta) +  np.multiply(np.log(v), v_pow_minus_theta),u_pow_minus_theta + v_pow_minus_theta - 1)) - (2 + (1/theta))*np.sum(np.divide(np.multiply(np.multiply(np.log(u) ** 2, u ** (-theta)) + np.multiply(np.log(v) ** 2, v_pow_minus_theta), u_pow_minus_theta + v_pow_minus_theta - 1) - ((np.multiply((u_pow_minus_theta), np.log(u)) + np.multiply((v_pow_minus_theta), np.log(v)))** 2), (((u ** (-theta))  + (v ** (-theta)) - 1) ** 2)))

    s = minus_sample / hes_cop
    hes_prior_cop = -1 / (s ** 2)
    # Opou loc valame scale apo ton deutero log kai meta.
    log_prior = np.log(norm.pdf(theta, loc=0, scale=s)) + np.log(expon.pdf(sigma[0], scale=1)) + np.log(expon.pdf(sigma[1], scale=1))
    BF = 1
    # Vgazoume to inv kai vazoume -1/
    BFu = cop1 + log_prior + 0.5 * np.log(-1/(det(hes_norm) * (hes_cop - hes_prior_cop)))
    hes = det(hes_norm) * (hes_cop - hes_prior_cop)

    if theta < 10**(-5):
        theta = 0
        cop1 = 0
        BFu = cop1 + log_prior + 0.5 * np.log(-det(np.matmul(hes_norm, hes_cop - hes_prior_cop)))

    result = {"theta": theta, "cop1": cop1, "hes": hes, "hes_prior_cor": hes_prior_cop, "BF": BF, "BFu": BFu}

    return result
Example #6
0
def fitted_clayton(residual_data):
    cop = ClaytonCopula(dim=residual_data.shape[1])
    cop.fit(residual_data)
    return cop
Example #7
0
def test_param_set_raises_error(dim, theta, err):
    cop = ClaytonCopula(dim=dim)
    with pytest.raises(ValueError, match=err):
        cop.params = theta
Example #8
0
def test_itau_fit(residual_data: np.ndarray):
    cop = ClaytonCopula(dim=residual_data.shape[1])
    cop.fit(residual_data, method='itau')
    assert_almost_equal(cop.params, 0.7848391, 4)
Example #9
0
def copula(residual_data: np.ndarray):
    dim = residual_data.shape[1]
    cop = ClaytonCopula(dim=dim)
    cop.params = 0.3075057
    return cop
Example #10
0
def test_fitted_parameters_match_target(residual_data: np.ndarray):
    cop = ClaytonCopula(dim=residual_data.shape[1])
    cop.fit(residual_data)
    assert_almost_equal(cop.params, 0.3075057, 4)
Example #11
0
def test_dipsi_raises_errors(theta, degree, err):
    cop = ClaytonCopula(theta, dim=2)
    with pytest.raises(NotImplementedError, match=err):
        cop.dipsi([0.6534646, 0.3093621], degree=degree)
Example #12
0
def test_param_set_raises_error(dim, theta, err):
    cop = ClaytonCopula(dim=dim)
    with pytest.raises(ValueError, match=err):
        cop.params = theta
Example #13
0
def test_itau_fit(residual_data: np.ndarray):
    cop = ClaytonCopula(dim=residual_data.shape[1])
    cop.fit(residual_data, method='itau')
    assert_almost_equal(cop.params, 0.7848391, 4)
Example #14
0
def copula(residual_data: np.ndarray):
    dim = residual_data.shape[1]
    cop = ClaytonCopula(dim=dim)
    cop.params = 0.3075057
    return cop