def initialize(self): if os.path.isabs(self.net_path): net_path_full = self.net_path else: net_path_full = os.path.join(env_settings().network_path, self.net_path) self.net, _ = load_network(net_path_full, backbone_pretrained=False) if self.use_gpu: self.net.cuda() self.net.eval() # self.iou_predictor = self.net.bb_regressor # original self.rgb_bb_regressor = self.net.rgb_bb_regressor self.t_bb_regressor = self.net.t_bb_regressor self.iou_guess = self.net.iou_guess self.layer_stride = { 'conv1': 2, 'layer1': 4, 'layer2': 8, 'layer3': 16, 'layer4': 32, 'classification': 16, 'fc': None } self.layer_dim = { 'conv1': 64, 'layer1': 64, 'layer2': 128, 'layer3': 256, 'layer4': 512, 'classification': 256, 'fc': None } self.iounet_feature_layers = self.net.bb_regressor_layer if isinstance(self.pool_stride, int) and self.pool_stride == 1: self.pool_stride = [1] * len(self.output_layers) self.feature_layers = sorted( list(set(self.output_layers + self.iounet_feature_layers))) self.mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1) self.std = torch.Tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1)
def __init__(self, name: str, parameter_name: str, exp_name: str, run_id: int = None, checkpoint_id = None, flag: str = None): self.name = name self.exp_name = exp_name self.parameter_name = parameter_name self.run_id = run_id self.flag = flag self.checkpoint_id = checkpoint_id env = env_settings() tracker_module = importlib.import_module('core.tracker.{}'.format(self.name)) self.parameters = self.get_parameters() self.tracker_class = tracker_module.get_tracker_class() self.default_visualization = getattr(self.parameters, 'visualization', False) self.default_debug = getattr(self.parameters, 'debug', 0)
def initialize(self): if os.path.isabs(self.net_path): net_path_full = self.net_path else: net_path_full = os.path.join(env_settings().network_path, self.net_path) if isinstance(self.pool_stride, int) and self.pool_stride == 1: self.pool_stride = [1] * len(self.output_layers) self.layer_stride = { 'vggconv1': 2, 'conv1': 2, 'layer1': 4, 'layer2': 8, 'layer3': 16, 'layer4': 32, 'fc': None } self.layer_dim = { 'vggconv1': 96, 'conv1': 64, 'layer1': 64, 'layer2': 128, 'layer3': 256, 'layer4': 512, 'fc': None } self.mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1) self.std = torch.Tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1) self.net = resnet18_vggmconv1(self.output_layers, path=net_path_full) if self.use_gpu: self.net.cuda() self.net.eval()
def __init__(self): self.env_settings = env_settings()