def train_P_net(image_set, root_path, dataset_path, prefix, end_epoch, frequent, lr): imdb = IMDB(data_name, image_set, root_path, dataset_path) gt_imdb = imdb.gt_imdb() gt_imdb = imdb.append_flipped_images(gt_imdb) sym = P_Net train_net(sym, prefix, end_epoch, gt_imdb, 12, frequent, lr)
def train_O_net(image_set, root_path, dataset_path, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch, frequent, lr, resume): imdb = IMDB("mtcnn", image_set, root_path, dataset_path) gt_imdb = imdb.gt_imdb() gt_imdb = imdb.append_flipped_images(gt_imdb) sym = O_Net() train_net(sym, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch, gt_imdb, 48, frequent, not resume, lr)
def train_R_net(image_set, root_path, dataset_path, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch, batch_size, thread_num, frequent, lr, lr_epoch, resume): imdb = IMDB("mtcnn", image_set, root_path, dataset_path) gt_imdb = imdb.gt_imdb() gt_imdb = imdb.append_flipped_images(gt_imdb) sym = R_Net() train_net(sym, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch, gt_imdb, batch_size, thread_num, 24, frequent, not resume, lr, lr_epoch)
def train_GA_net(mode, image_set, root_path, dataset_path, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch, batch_size, thread_num, frequent, lr, lr_epoch, resume): imdb = IMDB("GA", 112, image_set, root_path, dataset_path) gt_imdb = imdb.gt_imdb() gt_imdb = imdb.append_flipped_images(gt_imdb) sym = GA_Net112(mode, batch_size) train_net(mode, sym, prefix, ctx, pretrained, epoch, begin_epoch, end_epoch, gt_imdb, batch_size, thread_num, 112, 112, frequent, not resume, lr, lr_epoch)