Example #1
0
    def _fmin(self):
        '''
        xtol - difference between x for last and second last iteration
        ftol - same but for error function
        
        The nedler-mead simplex algorithm keeps track of the three 
        best solutions. xtol and ftol is calculated base on the three 
        last best solutions. Best minus the value of the second and 
        third. Max of this.
        '''
        with Stopwatch('\nOptimizing...'):

            out = opt.fmin(self.fmin_error_fun,
                           self.get_x0(),
                           args=(),
                           **self.kwargs_fmin)

            [xopt, fopt, iterations, funcalls, warnflag, allvecs] = out

            #print xopt, fopt, allvecs
            self.data['xopt'].append(xopt)  # append last
            self.data['fopt'].append(fopt)
            self.data['iterations'] = iterations
            self.data['funcalls'] = funcalls
            self.data['warnflag'] = warnflag
            self.data['allvecs'] = allvecs

            self.print_last(t=0)
Example #2
0
def _Simulate(sim_time, chunksize=None):
    if chunksize:
        #         print chunksize
        while sim_time > 0:
            if sim_time < chunksize:
                chunksize = sim_time


#             print 'inside', chunksize
#             with Barrier():
#             if Rank()==0:
#                 print 'Time left:{}'.format(sim_time)

            k = {'only_rank_0_mpi': True, 'relative_to': chunksize / 1000.}
            with Stopwatch('Time left {}'.format(sim_time), **k):
                nest.Simulate(chunksize)

            sim_time -= chunksize
    else:
        nest.Simulate(sim_time)
Example #3
0
def _Connect_speed(pre, post, *args, **kwargs):
    def fun(pre, post, args, kwargs, sl):
        #         args=[a[sl] for a in args]
        #         print sl

        _Connect_speed_internal(pre[sl], post[sl], *[a[sl] for a in args],
                                **kwargs)

    step = 10000  #n/chunks
    n = len(pre)
    chunks = int(numpy.ceil(n / float(step)))
    slice_list = []
    for i in range(chunks):
        if i < chunks - 1:
            slice_list.append(slice(i * step, (i + 1) * step))
        else:
            slice_list.append(slice(i * step, n))

    from core.misc import Stopwatch
    #     print 'hej'
    with Stopwatch('Connecting'):
        map(fun, [pre] * chunks, [post] * chunks, [args] * chunks,
            [kwargs] * chunks, slice_list)
Example #4
0
'''
Created on Sep 29, 2014

@author: mikael
'''

import os
import sys

currdir = os.getcwd()
basedir = '/'.join(currdir.split('/')[:-1])

from core import data_to_disk
from core.misc import Stopwatch
from core.parallel_excecution import Mockup_class
from scripts_inhibition import base_Go_NoGo_compete

import pprint

pp = pprint.pprint
# pp(sys.modules)
fileName = sys.argv[1]
print fileName
obj, script = data_to_disk.pickle_load(fileName)

# print 'Running '+str(obj)+' as ' + script
with Stopwatch('Running ' + str(obj) + ' as ' + script):
    obj.do()
Example #5
0
def _Connect_DC(pre, post, weights, delays, model, only_local=False):

    from itertools import izip
    tp, receptor = nest.GetDefaults(model, ['type', 'receptor_type'])
    if not only_local:

        #         with Stopwatch('Connecting DC', **{'only_rank_0_mpi':True}):
        #             post_ids=list(numpy.unique(post))
        #             status=GetStatus(list(numpy.unique(post)), 'local')
        #             lock_up=dict(zip(post_ids,status))
        #
        #             dic={}
        #             for d, s, t, w in izip(delays, pre, post, weights_input_rates):
        #                 if not lock_up[t]:
        #                     continue
        # #                 pp(lock_up)
        #                 if s not in dic.keys():
        #                     dic[s]={'target':[t*1.0],
        #                             'weight':[w],
        #                             'delay':[d]}
        #                 else:
        #                     dic[s]['target'].append(t*1.0)
        #                     dic[s]['weight'].append(w)
        #                     dic[s]['delay'].append(d)
        #             pp(dic)
        #             key=dic.keys()
        #             DataConnect(key, [dic[k] for k in key], model)

        with Stopwatch('Connecting DC', **{'only_rank_0_mpi': True}):

            post_ids = list(numpy.unique(post))
            status = GetStatus(list(numpy.unique(post)), 'local')
            lock_up = dict(zip(post_ids, status))

            step = 100000  #n/chunks
            n = len(pre)
            chunks = int(numpy.ceil(n / float(step)))
            slice_list = []
            for i in range(chunks):
                if i < chunks - 1:
                    slice_list.append(slice(i * step, (i + 1) * step))
                else:
                    slice_list.append(slice(i * step, n))

            for s in slice_list:
                params = [{
                    'delay': d,
                    'receptor': receptor,
                    'source': s,
                    'synapse_model': model,
                    'target': t,
                    'type': tp,
                    'weight': w
                } for s, t, d, w, in izip(pre[s], post[s], delays[s],
                                          weights[s]) if lock_up[t]]
                DataConnect(params)
                del params
                import gc
                gc.collect()
    elif only_local:

        #         with Stopwatch('Connecting DC', **{'only_rank_0_mpi':True}):
        #
        #             dic={}
        #             for d, s, t, w in izip(delays, pre, post, weights_input_rates):
        #                 if s not in dic.keys():
        #                     dic[s]={'target':[t],
        #                             'weight':[w],
        #                             'delay':[d]}
        #                 else:
        #                     dic[s]['target'].append(t)
        #                     dic[s]['weight'].append(w)
        #                     dic[s]['delay'].append(d)
        #
        #                 key, val=dic.items()
        #                 DataConnect(key, val, model)

        with Stopwatch('Connecting DC', **{'only_rank_0_mpi': True}):

            #             step=20000 #n/chunks
            #             n=len(pre)
            #             chunks=int(numpy.ceil(n/float(step)))
            #             slice_list=[]
            #             for i in range(chunks):
            #                 if i<chunks-1:
            #                     slice_list.append(slice(i*step,(i+1)*step))
            #                 else:
            #                     slice_list.append(slice(i*step, n))
            #
            #
            #             for s in slice_list:
            #                 params=[{'delay': d,
            #                          'receptor': receptor,
            #                          'source': s,
            #                          'synapse_model': model,
            #                          'target': t,
            #                          'type': tp,
            #                          'weight': w}   for s, t, d, w, in izip(pre[s],
            #                                                                 post[s],
            #                                                                 delays[s],
            #                                                                 weights_input_rates[s]
            #                                                                  )]
            #                 DataConnect(params)
            #                 del params
            #                 import gc
            #                 gc.collect()

            #             for s in slice_list:
            #             lnt=nest.GetKernelStatus('local_num_threads')
            #             nest.SetKernelStatus({'local_num_threads':1})
            m = len(delays)
            params = map(_Connect_DC_fun, delays, [receptor] * m, pre,
                         [model] * m, post, [tp] * m, weights)

            DataConnect(params)
            nest.SetKernelStatus({'local_num_threads': 1})
            del params
            import gc
            gc.collect()
            print 'hej'
Example #6
0
    d = {}
    d[0] = nest.Create('aeif_cond_exp', 20000)
    nest.CopyModel('static_synapse', 'static')
    connect(d, chunks, type_conn)


#     my_nest.Connect(args[0], args[1], model='static', chunks=chunks)
#     args=get_pre_post(500,d[0], d[1] )
#     nest.Connect(*args, model='tsodyks')

#     nest.Simulate(10000)
#     time.sleep(30)

if __name__ == '__main__':
    #     time.sleep(60)
    with Stopwatch('Connect 1'):
        gen_network(1, 'Connect')
#     nest.Simulate(1000)
    nest.ResetKernel()
    gc.collect()
    time.sleep(60)
    with Stopwatch('Connect 10'):
        gen_network(10, 'Connect')

#     nest.Simulate(1000)
    nest.ResetKernel()
    gc.collect()
    time.sleep(60)

    with Stopwatch('Connect 100'):
        gen_network(100, 'Connect')