def network(self, seed, batch_size, update_collection): s1, s2, s4, s8, s16 = conv_sizes(self.output_size, layers=4, stride=2) z_ = linear(seed, self.dim * 8 * s8 * s8, self.prefix + 'h0_lin', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale ) # project random noise seed and reshape h0 = tf.reshape(z_, self.data_format(batch_size, s8, s8, self.dim * 8)) h0 = tf.nn.relu(self.g_bn0(h0)) h1 = deconv2d(h0, self.data_format(batch_size, s4, s4, self.dim * 4), name=self.prefix + 'h1', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h1 = tf.nn.relu(self.g_bn1(h1)) h2 = deconv2d(h1, self.data_format(batch_size, s2, s2, self.dim * 2), name=self.prefix + 'h2', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h2 = tf.nn.relu(self.g_bn2(h2)) h3 = deconv2d(h2, self.data_format(batch_size, s1, s1, self.dim * 1), name=self.prefix + 'h3', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h3 = tf.nn.relu(self.g_bn3(h3)) # SN dcgan generator implementation has smaller convolutional field and stride=1 h4 = deconv2d(h3, self.data_format(batch_size, s1, s1, self.c_dim), k_h=3, k_w=3, d_h=1, d_w=1, name=self.prefix + 'h4', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) return tf.nn.sigmoid(h4)
def network(self, seed, batch_size, update_collection): s1, s2, s4, s8, s16 = conv_sizes(self.output_size, layers=4, stride=2) # 64, 32, 16, 8, 4 - for self.output_size = 64 # default architecture # For Cramer: self.gf_dim = 64 z_ = linear(seed, self.dim * 8 * s16 * s16, self.prefix + 'h0_lin', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale ) # project random noise seed and reshape h0 = tf.reshape(z_, self.data_format(batch_size, s16, s16, self.dim * 8)) h0 = tf.nn.relu(self.g_bn0(h0)) h1 = deconv2d(h0, self.data_format(batch_size, s8, s8, self.dim * 4), name=self.prefix + 'h1', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h1 = tf.nn.relu(self.g_bn1(h1)) h2 = deconv2d(h1, self.data_format(batch_size, s4, s4, self.dim * 2), name=self.prefix + 'h2', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h2 = tf.nn.relu(self.g_bn2(h2)) h3 = deconv2d(h2, self.data_format(batch_size, s2, s2, self.dim * 1), name=self.prefix + 'h3', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h3 = tf.nn.relu(self.g_bn3(h3)) h4 = deconv2d(h3, self.data_format(batch_size, s1, s1, self.c_dim), name=self.prefix + 'h4', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) return tf.nn.sigmoid(h4)
def network(self, seed, batch_size, update_collection): from core.resnet import block, ops s1, s2, s4, s8, s16, s32 = conv_sizes(self.output_size, layers=5, stride=2) # project `z` and reshape z_ = linear(seed, self.dim * 16 * s32 * s32, self.prefix + 'h0_lin') h0 = tf.reshape(z_, [-1, self.dim * 16, s32, s32]) # NCHW format h1 = block.ResidualBlock(self.prefix + 'res1', 16 * self.dim, 8 * self.dim, 3, h0, resample='up') h2 = block.ResidualBlock(self.prefix + 'res2', 8 * self.dim, 4 * self.dim, 3, h1, resample='up') h3 = block.ResidualBlock(self.prefix + 'res3', 4 * self.dim, 2 * self.dim, 3, h2, resample='up') h4 = block.ResidualBlock(self.prefix + 'res4', 2 * self.dim, self.dim, 3, h3, resample='up') h4 = ops.batchnorm.Batchnorm('g_h4', [0, 2, 3], h4) h4 = tf.nn.relu(h4) # h5 = lib.ops.conv2d.Conv2D('g_h5', dim, 3, 3, h4) if self.format == 'NHWC': h4 = tf.transpose(h4, [0, 2, 3, 1]) # NCHW to NHWC h5 = deconv2d(h4, self.data_format(batch_size, s1, s1, self.c_dim), name=self.prefix + 'g_h5') return tf.nn.sigmoid(h5)
def network(self, seed, y, batch_size, update_collection): from core.resnet import block, ops s1, s2, s4, s8, s16, s32 = conv_sizes(self.output_size, layers=5, stride=2) # project `z` and reshape if self.output_size == 64: s32 = 4 z_ = linear(seed, self.dim * 16 * s32 * s32, self.prefix + 'h0_lin') h0 = tf.reshape(z_, [-1, self.dim * 16, s32, s32]) # NCHW format if self.output_size == 64: h0_bis = h0 else: h0_bis = block.ResidualBlock(self.prefix + 'res0_bis', 16 * self.dim, 16 * self.dim, 3, h0, y=y, num_classes=self.num_classes, resample='up', mode='cond_batchnorm') h1 = block.ResidualBlock(self.prefix + 'res1', 16 * self.dim, 8 * self.dim, 3, h0_bis, y=y, num_classes=self.num_classes, resample='up', mode='cond_batchnorm') h2 = block.ResidualBlock(self.prefix + 'res2', 8 * self.dim, 4 * self.dim, 3, h1, y=y, num_classes=self.num_classes, resample='up', mode='cond_batchnorm') h3 = block.ResidualBlock(self.prefix + 'res3', 4 * self.dim, 2 * self.dim, 3, h2, y=y, num_classes=self.num_classes, resample='up', mode='cond_batchnorm') h4 = block.ResidualBlock(self.prefix + 'res4', 2 * self.dim, self.dim, 3, h3, y=y, num_classes=self.num_classes, resample='up', mode='cond_batchnorm') h4 = ops.batchnorm.Batchnorm('g_h4', [0, 2, 3], h4) h4 = tf.nn.relu(h4) if self.format == 'NHWC': h4 = tf.transpose(h4, [0, 2, 3, 1]) # NCHW to NHWC h5 = deconv2d(h4, self.data_format(batch_size, s1, s1, self.c_dim), k_h=3, k_w=3, d_h=1, d_w=1, name=self.prefix + 'g_h5') return tf.nn.sigmoid(h5)
def network(self, seed, batch_size, update_collection): s1, s2, s4, s8, s16, s32 = conv_sizes(self.output_size, layers=5, stride=2) # project `z` and reshape z_ = linear(seed, self.dim * 16 * s32 * s32, self.prefix + 'h0_lin', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale) h0 = tf.reshape(z_, self.data_format(-1, s32, s32, self.dim * 16)) h0 = tf.nn.relu(self.g_bn0(h0)) h1 = deconv2d(h0, self.data_format(batch_size, s16, s16, self.dim * 8), name=self.prefix + 'h1', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h1 = tf.nn.relu(self.g_bn1(h1)) h2 = deconv2d(h1, self.data_format(batch_size, s8, s8, self.dim * 4), name=self.prefix + 'h2', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h2 = tf.nn.relu(self.g_bn2(h2)) h3 = deconv2d(h2, self.data_format(batch_size, s4, s4, self.dim * 2), name=self.prefix + 'h3', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h3 = tf.nn.relu(self.g_bn3(h3)) h4 = deconv2d(h3, self.data_format(batch_size, s2, s2, self.dim), name=self.prefix + 'h4', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) h4 = tf.nn.relu(self.g_bn4(h4)) h5 = deconv2d(h4, self.data_format(batch_size, s1, s1, self.c_dim), name=self.prefix + 'h5', update_collection=update_collection, with_sn=self.with_sn, scale=self.scale, with_learnable_sn_scale=self.with_learnable_sn_scale, data_format=self.format) return tf.nn.sigmoid(h5)