def export_colors(datafile, outfile): try: A = mmread(datafile) A = A.toarray() d = np.zeros_like(A) G = s.DirectedGraph(A, d) colors = G.coloring() with open(outfile, 'wb') as out: pickle.dump(colors, out) except Exception as e: with open('error_log.txt', 'w') as error_log: error_log.write(f'\n {e}') finally: return
f = np.array([[sig, sig2, sig, sig, sig, sig, sig2, sig], [sig2, sig2, sig2, sig2, sig2, sig2, sig2, sig2], [sig, sig2, sig, sig, sig, sig, sig2, sig], [sig, sig2, sig, sig, sig, sig, sig2, sig], [sig, sig2, sig, sig, sig, sig, sig2, sig], [sig, sig2, sig, sig, sig, sig, sig2, sig], [sig2, sig2, sig2, sig2, sig2, sig2, sig2, sig2], [sig, sig2, sig, sig, sig, sig, sig2, sig]]) a = np.array([zero, f1, f1, f1, f1, f1, f1, f1]) labels = ['1', '2', '3', '4', '5', '6', '7', '8'] counts = [] for i in range(20): G = s.DirectedGraph(A, (a, f), labels=labels) for i in range(5): base = np.random.choice(G.indices, int(G.n * 0.9), replace=False) G.specialize(base) data = G.coloring() for key in data.keys(): counts.append(len(data[key])) print(G.n) plt.hist(counts) plt.show() # print(G.coloring()) # G.network_vis()#use_eqp=True)
import sys import os path = os.getcwd() sys.path.insert(1, path[:-4]) import core.specializer as s import numpy as np from importlib import reload import networkx as nx import matplotlib.pyplot as plt import time import autograd.numpy as anp import pickle from scipy.io import mmread if __name__ == "__main__": # A = mmread('/home/ethan/Research/NetworkSpecialization/data/inf-power/inf-power.mtx') A = mmread('../data/inf-power/inf-power.mtx') A = A.toarray() d = np.zeros_like(A) G = s.DirectedGraph(A, d) colors = G.coloring() with open('colors', 'wb') as out: pickle.dump(colors, out)