Example #1
0
def save_tf():
  NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
  input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3])
  if FLAGS.tiny:
    feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
    bbox_tensors = []
    for i, fm in enumerate(feature_maps):
      bbox_tensor = decode(fm, NUM_CLASS, i)
      bbox_tensors.append(bbox_tensor)
    model = tf.keras.Model(input_layer, bbox_tensors)
    utils.load_weights_tiny(model, FLAGS.weights)
  else:
    if FLAGS.model == 'yolov3':
      feature_maps = YOLOv3(input_layer, NUM_CLASS)
      bbox_tensors = []
      for i, fm in enumerate(feature_maps):
        bbox_tensor = decode(fm, NUM_CLASS, i)
        bbox_tensors.append(bbox_tensor)
      model = tf.keras.Model(input_layer, bbox_tensors)
      utils.load_weights_v3(model, FLAGS.weights)
    elif FLAGS.model == 'yolov4':
      feature_maps = YOLOv4(input_layer, NUM_CLASS)
      bbox_tensors = []
      for i, fm in enumerate(feature_maps):
        bbox_tensor = decode(fm, NUM_CLASS, i)
        bbox_tensors.append(bbox_tensor)
      model = tf.keras.Model(input_layer, bbox_tensors)
      utils.load_weights(model, FLAGS.weights)
    else:
      print("model option can be only 'yolov3' or 'yolov4'.")
      return

  model.summary()

  model.save(FLAGS.output)
Example #2
0
def main(_argv):
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3])
    if FLAGS.tiny:
        feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
        bbox_tensors = []
        for i, fm in enumerate(feature_maps):
            bbox_tensor = decode(fm, NUM_CLASS, i)
            bbox_tensors.append(bbox_tensor)
        model = tf.keras.Model(input_layer, bbox_tensors)
        utils.load_weights_tiny(model, FLAGS.weights)
    else:
        if FLAGS.model == 'yolov3':
            feature_maps = YOLOv3(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_v3(model, FLAGS.weights)
        elif FLAGS.model == 'yolov4':
            feature_maps = YOLOv4(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights(model, FLAGS.weights)
    
    save_model(model)
    save_tflite(model)
    demo()
Example #3
0
def save_tflite():
  NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
  input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3])
  if FLAGS.tiny:
    feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
    bbox_tensors = []
    for i, fm in enumerate(feature_maps):
      bbox_tensor = decode(fm, NUM_CLASS, i)
      bbox_tensors.append(bbox_tensor)
    model = tf.keras.Model(input_layer, bbox_tensors)
    utils.load_weights_tiny(model, FLAGS.weights)
  else:
    if FLAGS.model == 'yolov3':
      feature_maps = YOLOv3(input_layer, NUM_CLASS)
      bbox_tensors = []
      for i, fm in enumerate(feature_maps):
        bbox_tensor = decode(fm, NUM_CLASS, i)
        bbox_tensors.append(bbox_tensor)
      model = tf.keras.Model(input_layer, bbox_tensors)
      utils.load_weights_v3(model, FLAGS.weights)
    elif FLAGS.model == 'yolov4':
      feature_maps = YOLOv4(input_layer, NUM_CLASS)
      bbox_tensors = []
      for i, fm in enumerate(feature_maps):
        bbox_tensor = decode(fm, NUM_CLASS, i)
        bbox_tensors.append(bbox_tensor)
      model = tf.keras.Model(input_layer, bbox_tensors)
      utils.load_weights(model, FLAGS.weights)

  model.summary()

    # Save Model, including Frozen graph
    model.save('./model')
Example #4
0
def save_tflite():
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    input_layer = tf.keras.layers.Input(
        [FLAGS.input_size, FLAGS.input_size, 3])
    if FLAGS.tiny:
        if FLAGS.model == 'yolov3':
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
        else:
            feature_maps = YOLOv4_tiny(input_layer, NUM_CLASS)
        bbox_tensors = []
        for i, fm in enumerate(feature_maps):
            bbox_tensor = decode(fm, NUM_CLASS, i)
            bbox_tensors.append(bbox_tensor)
        model = tf.keras.Model(input_layer, bbox_tensors)
        utils.load_weights_tiny(model, FLAGS.weights)
    else:
        if FLAGS.model == 'yolov3':
            feature_maps = YOLOv3(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_v3(model, FLAGS.weights)
        elif FLAGS.model == 'yolov4':
            feature_maps = YOLOv4(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights(model, FLAGS.weights)
    model.summary()

    converter = tf.lite.TFLiteConverter.from_keras_model(model)
    if tf.__version__ >= '2.2.0':
        converter.experimental_new_converter = False

    if FLAGS.quantize_mode == 'int8':
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
    elif FLAGS.quantize_mode == 'float16':
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        converter.target_spec.supported_types = [
            tf.compat.v1.lite.constants.FLOAT16
        ]
    elif FLAGS.quantize_mode == 'full_int8':
        converter.target_spec.supported_ops = [
            tf.lite.OpsSet.TFLITE_BUILTINS_INT8
        ]
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        converter.target_spec.supported_ops = [
            tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
        ]
        converter.allow_custom_ops = True
        converter.representative_dataset = representative_data_gen

    tflite_model = converter.convert()
    open(FLAGS.output, 'wb').write(tflite_model)
    logging.info("model saved to: {}".format(FLAGS.output))
def main(_argv):
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    input_size = FLAGS.size
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    if len(physical_devices) > 0:
        tf.config.experimental.set_memory_growth(physical_devices[0], True)
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)
    logging.info('weights loaded')

    # Test the TensorFlow Lite model on random input data.
    sum = 0
    for i in range(1000):
        img_raw = tf.image.decode_image(open(FLAGS.image, 'rb').read(),
                                        channels=3)

        original_image = cv2.imread(FLAGS.image)
        original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
        original_image_size = original_image.shape[:2]
        image_data = utils.image_preporcess(np.copy(original_image),
                                            [FLAGS.size, FLAGS.size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)

        prev_time = time.time()
        pred_bbox = model.predict(image_data)
        # pred_bbox = pred_bbox.numpy()
        curr_time = time.time()
        exec_time = curr_time - prev_time
        if i == 0: continue
        sum += (1000 / (1000 * exec_time))
        info = "average FPS:" + str(round(sum / i, 2)) + ", FPS: " + str(
            round((1000 / (1000 * exec_time)), 1))
        print(info)
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    video_path = FLAGS.video

    print("Video from: ", video_path )
    vid = cv2.VideoCapture(video_path)

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    image_path = FLAGS.image

    original_image = cv2.imread(image_path)
    original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
    original_image_size = original_image.shape[:2]

    image_data = utils.image_preporcess(np.copy(original_image),
                                        [input_size, input_size])
    image_data = image_data[np.newaxis, ...].astype(np.float32)
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)

        model.summary()
        pred_bbox = model.predict(image_data)
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)
        interpreter.set_tensor(input_details[0]['index'], image_data)
        interpreter.invoke()
        pred_bbox = [
            interpreter.get_tensor(output_details[i]['index'])
            for i in range(len(output_details))
        ]

    if FLAGS.model == 'yolov4':
        pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                            XYSCALE)
    else:
        pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)
    bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                     input_size, 0.25)
    bboxes = utils.nms(bboxes, 0.213, method='nms')

    image = utils.draw_bbox(original_image, bboxes)
    image = Image.fromarray(image)
    image.show()
def main(_argv):
    INPUT_SIZE = FLAGS.size
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    CLASSES = utils.read_class_names(cfg.YOLO.CLASSES)
    predicted_dir_path = './mAP/predicted'
    ground_truth_dir_path = './mAP/ground-truth'
    if os.path.exists(predicted_dir_path): shutil.rmtree(predicted_dir_path)
    if os.path.exists(ground_truth_dir_path):
        shutil.rmtree(ground_truth_dir_path)
    if os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH):
        shutil.rmtree(cfg.TEST.DECTECTED_IMAGE_PATH)

    os.mkdir(predicted_dir_path)
    os.mkdir(ground_truth_dir_path)
    os.mkdir(cfg.TEST.DECTECTED_IMAGE_PATH)
    times = []
    classes = [
        'Book', 'Bottle', 'Computer keyboard', 'Computer mouse', 'Laptop',
        'Mobile phone', 'Backpack'
    ]

    # Build Model
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([INPUT_SIZE, INPUT_SIZE, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)

    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    num_lines = sum(1 for line in open(FLAGS.annotation_path))
    with open(cfg.TEST.ANNOT_PATH, 'r') as annotation_file:
        for num, line in enumerate(annotation_file):
            annotation = line.strip().split()
            image_path = annotation[0]
            image_name = image_path.split('/')[-1]
            image = cv2.imread(image_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            bbox_data_gt = np.array(
                [list(map(float, box.split(','))) for box in annotation[1:]])

            if len(bbox_data_gt) == 0:
                bboxes_gt = []
                classes_gt = []
            else:
                bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4]
            ground_truth_path = os.path.join(ground_truth_dir_path,
                                             str(num) + '.txt')
            current_class = ''
            print('=> ground truth of %s:' % image_name)
            num_bbox_gt = len(bboxes_gt)
            with open(ground_truth_path, 'w') as f:
                for i in range(num_bbox_gt):
                    # esto
                    class_name = CLASSES[classes_gt[i]]
                    # esto
                    if i == 0:
                        current_class = class_name
                    class_name = CLASSES[classes_gt[i]]
                    if class_name == current_class:
                        xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i]))
                        bbox_mess = ' '.join(
                            [class_name, xmin, ymin, xmax, ymax]) + '\n'
                        f.write(bbox_mess)
                        print('\t' + str(bbox_mess).strip())
            print('=> predict result of %s:' % image_name)
            predict_result_path = os.path.join(predicted_dir_path,
                                               str(num) + '.txt')
            # Predict Process
            image_size = image.shape[:2]
            image_data = utils.image_preprocess(np.copy(image),
                                                [INPUT_SIZE, INPUT_SIZE])
            image_data = image_data[np.newaxis, ...].astype(np.float32)

            if FLAGS.framework == "tf":
                startTime = time.time()
                pred_bbox = model.predict(image_data)
                times.append(time.time() - startTime)
            else:
                interpreter.set_tensor(input_details[0]['index'], image_data)
                interpreter.invoke()
                pred_bbox = [
                    interpreter.get_tensor(output_details[i]['index'])
                    for i in range(len(output_details))
                ]
            if FLAGS.model == 'yolov3':
                pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS,
                                                    STRIDES)
            elif FLAGS.model == 'yolov4':
                XYSCALE = cfg.YOLO.XYSCALE
                pred_bbox = utils.postprocess_bbbox(pred_bbox,
                                                    ANCHORS,
                                                    STRIDES,
                                                    XYSCALE=XYSCALE)

            pred_bbox = tf.concat(pred_bbox, axis=0)
            bboxes = utils.postprocess_boxes(pred_bbox, image_size, INPUT_SIZE,
                                             cfg.TEST.SCORE_THRESHOLD)
            bboxes = utils.nms(bboxes, cfg.TEST.IOU_THRESHOLD, method='nms')

            if cfg.TEST.DECTECTED_IMAGE_PATH is not None:
                image = utils.draw_bbox(image, bboxes)
                cv2.imwrite(cfg.TEST.DECTECTED_IMAGE_PATH + image_name, image)

            with open(predict_result_path, 'w') as f:
                for bbox in bboxes:
                    if (CLASSES[int(bbox[5])] in classes) and (current_class
                                                               == CLASSES[int(
                                                                   bbox[5])]):
                        coor = np.array(bbox[:4], dtype=np.int32)
                        score = bbox[4]
                        class_ind = int(bbox[5])
                        class_name = CLASSES[class_ind]
                        score = '%.4f' % score
                        xmin, ymin, xmax, ymax = list(map(str, coor))
                        bbox_mess = ' '.join(
                            [class_name, score, xmin, ymin, xmax, ymax]) + '\n'
                        f.write(bbox_mess)
                        print('\t' + str(bbox_mess).strip())
            print(num, num_lines)
            print("Elapsed time: " + str(sum(times) / len(times)))
def main(_argv):
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    if len(physical_devices) > 0:
        tf.config.experimental.set_memory_growth(physical_devices[0], True)

    trainset = Dataset(is_training=True)
    testset = Dataset(is_training=False)
    logdir = "./data/log"
    isfreeze = False
    steps_per_epoch = len(trainset)
    first_stage_epochs = cfg.TRAIN.FISRT_STAGE_EPOCHS
    second_stage_epochs = cfg.TRAIN.SECOND_STAGE_EPOCHS
    global_steps = tf.Variable(1, trainable=False, dtype=tf.int64)
    warmup_steps = cfg.TRAIN.WARMUP_EPOCHS * steps_per_epoch
    total_steps = (first_stage_epochs + second_stage_epochs) * steps_per_epoch
    # train_steps = (first_stage_epochs + second_stage_epochs) * steps_per_period

    input_layer = tf.keras.layers.Input([cfg.TRAIN.INPUT_SIZE, cfg.TRAIN.INPUT_SIZE, 3])
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    STRIDES         = np.array(cfg.YOLO.STRIDES)
    IOU_LOSS_THRESH = cfg.YOLO.IOU_LOSS_THRESH
    XYSCALE = cfg.YOLO.XYSCALE
    ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS)

    if FLAGS.tiny:
        feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
        bbox_tensors = []
        for i, fm in enumerate(feature_maps):
            bbox_tensor = decode_train(fm, NUM_CLASS, STRIDES, ANCHORS, i)
            bbox_tensors.append(fm)
            bbox_tensors.append(bbox_tensor)
        model = tf.keras.Model(input_layer, bbox_tensors)
    else:
        if FLAGS.model == 'yolov3':
            feature_maps = YOLOv3(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode_train(fm, NUM_CLASS, STRIDES, ANCHORS, i)
                bbox_tensors.append(fm)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
        elif FLAGS.model == 'yolov4':
            feature_maps = YOLOv4(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode_train(fm, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE)
                bbox_tensors.append(fm)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)

    if FLAGS.weights == None:
        print("Training from scratch")
    else:
        if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights":
            if FLAGS.tiny:
                utils.load_weights_tiny(model, FLAGS.weights)
            else:
                if FLAGS.model == 'yolov3':
                    utils.load_weights_v3(model, FLAGS.weights)
                else:
                    utils.load_weights(model, FLAGS.weights)
        else:
            model.load_weights(FLAGS.weights)
        print('Restoring weights from: %s ... ' % FLAGS.weights)


    optimizer = tf.keras.optimizers.Adam()
    if os.path.exists(logdir): shutil.rmtree(logdir)
    writer = tf.summary.create_file_writer(logdir)

    def train_step(image_data, target):
        with tf.GradientTape() as tape:
            pred_result = model(image_data, training=True)
            giou_loss = conf_loss = prob_loss = 0

            # optimizing process
            for i in range(3):
                conv, pred = pred_result[i * 2], pred_result[i * 2 + 1]
                loss_items = compute_loss(pred, conv, target[i][0], target[i][1], STRIDES=STRIDES, NUM_CLASS=NUM_CLASS, IOU_LOSS_THRESH=IOU_LOSS_THRESH, i=i)
                giou_loss += loss_items[0]
                conf_loss += loss_items[1]
                prob_loss += loss_items[2]

            total_loss = giou_loss + conf_loss + prob_loss

            gradients = tape.gradient(total_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(gradients, model.trainable_variables))
            tf.print("=> STEP %4d   lr: %.6f   giou_loss: %4.2f   conf_loss: %4.2f   "
                     "prob_loss: %4.2f   total_loss: %4.2f" % (global_steps, optimizer.lr.numpy(),
                                                               giou_loss, conf_loss,
                                                               prob_loss, total_loss))
            # update learning rate
            global_steps.assign_add(1)
            if global_steps < warmup_steps:
                lr = global_steps / warmup_steps * cfg.TRAIN.LR_INIT
            else:
                lr = cfg.TRAIN.LR_END + 0.5 * (cfg.TRAIN.LR_INIT - cfg.TRAIN.LR_END) * (
                    (1 + tf.cos((global_steps - warmup_steps) / (total_steps - warmup_steps) * np.pi))
                )
            optimizer.lr.assign(lr.numpy())

            # writing summary data
            with writer.as_default():
                tf.summary.scalar("lr", optimizer.lr, step=global_steps)
                tf.summary.scalar("loss/total_loss", total_loss, step=global_steps)
                tf.summary.scalar("loss/giou_loss", giou_loss, step=global_steps)
                tf.summary.scalar("loss/conf_loss", conf_loss, step=global_steps)
                tf.summary.scalar("loss/prob_loss", prob_loss, step=global_steps)
            writer.flush()
    def test_step(image_data, target):
        with tf.GradientTape() as tape:
            pred_result = model(image_data, training=True)
            giou_loss = conf_loss = prob_loss = 0

            # optimizing process
            for i in range(3):
                conv, pred = pred_result[i * 2], pred_result[i * 2 + 1]
                loss_items = compute_loss(pred, conv, target[i][0], target[i][1], STRIDES=STRIDES, NUM_CLASS=NUM_CLASS, IOU_LOSS_THRESH=IOU_LOSS_THRESH, i=i)
                giou_loss += loss_items[0]
                conf_loss += loss_items[1]
                prob_loss += loss_items[2]

            total_loss = giou_loss + conf_loss + prob_loss

            tf.print("=> TEST STEP %4d   giou_loss: %4.2f   conf_loss: %4.2f   "
                     "prob_loss: %4.2f   total_loss: %4.2f" % (global_steps, giou_loss, conf_loss,
                                                               prob_loss, total_loss))

    for epoch in range(first_stage_epochs + second_stage_epochs):
        if epoch < first_stage_epochs:
            if not isfreeze:
                isfreeze = True
                for name in ['conv2d_93', 'conv2d_101', 'conv2d_109']:
                    freeze = model.get_layer(name)
                    freeze_all(freeze)
        elif epoch >= first_stage_epochs:
            if isfreeze:
                isfreeze = False
                for name in ['conv2d_93', 'conv2d_101', 'conv2d_109']:
                    freeze = model.get_layer(name)
                    unfreeze_all(freeze)
        for image_data, target in trainset:
            train_step(image_data, target)
        for image_data, target in testset:
            test_step(image_data, target)
        model.save_weights("./checkpoints/yolov4")
Example #10
0
def main(_argv):
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    for physical_device in physical_devices:
        tf.config.experimental.set_memory_growth(physical_device, True)

    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        XYSCALE = cfg.YOLO.XYSCALE_TINY
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY_V3, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        XYSCALE = cfg.YOLO.XYSCALE
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)

    CLASSES = utils.read_class_names(cfg.YOLO.CLASSES)
    NUM_CLASSES = len(CLASSES)
    input_size = FLAGS.size
    try:
        vid = cv2.VideoCapture(int(FLAGS.video))
    except:
        vid = cv2.VideoCapture(FLAGS.video)

    times = []
    if FLAGS.output:
        width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(vid.get(cv2.CAP_PROP_FPS))
        codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
        out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height))

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3_tiny(input_layer, NUM_CLASSES)
            else:
                feature_maps = YOLOv4_tiny(input_layer, NUM_CLASSES)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASSES, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASSES)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASSES, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASSES)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASSES, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) -
                                            1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()
        model.summary()
    elif FLAGS.framework == 'tflite':
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
    elif FLAGS.framework == 'trt':
        saved_model_loaded = tf.saved_model.load(FLAGS.weights,
                                                 tags=[tag_constants.SERVING])
        infer = saved_model_loaded.signatures['serving_default']

    max_cosine_distance = 0.7  # 0.5 / 0.7
    nn_budget = None
    model_filename = './weights/tracker/mars-small128.pb'
    encoder = gdet.create_box_encoder(model_filename, batch_size=1)
    metric = nn_matching.NearestNeighborDistanceMetric("cosine",
                                                       max_cosine_distance,
                                                       nn_budget)
    tracker = Tracker(metric)
    key_list = list(CLASSES.keys())
    val_list = list(CLASSES.values())
    Track_only = []

    logging.info("Models loaded!")
    while True:
        return_value, frame = vid.read()
        if not return_value:
            logging.warning("Empty Frame")
            break

        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame_size = frame.shape[:2]

        image_data = utils.image_preprocess(np.copy(frame),
                                            [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)

        t1 = time.time()
        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        elif FLAGS.framework == 'tflite':
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [
                interpreter.get_tensor(output_details[i]['index'])
                for i in range(len(output_details))
            ]
        elif FLAGS.framework == 'trt':
            batched_input = tf.constant(image_data)
            pred_bbox = []
            result = infer(batched_input)
            for _, value in result.items():
                value = value.numpy()
                pred_bbox.append(value)
        t2 = time.time()
        times.append(t2 - t1)
        times = times[-20:]
        ms = sum(times) / len(times) * 1000
        fps = 1000 / ms

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)
        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                         0.5)  # 0.25
        bboxes = utils.nms(bboxes, 0.5, method='nms')  # 0.213

        boxes, scores, names = [], [], []
        for bbox in bboxes:
            if len(Track_only) != 0 and CLASSES[int(
                    bbox[5])] in Track_only or len(Track_only) == 0:
                boxes.append([
                    bbox[0].astype(int), bbox[1].astype(int),
                    bbox[2].astype(int) - bbox[0].astype(int),
                    bbox[3].astype(int) - bbox[1].astype(int)
                ])
                scores.append(bbox[4])
                names.append(CLASSES[int(bbox[5])])

        boxes = np.array(boxes)
        names = np.array(names)
        scores = np.array(scores)
        features = np.array(encoder(frame, boxes))
        detections = [
            Detection(bbox, score, class_name, feature)
            for bbox, score, class_name, feature in zip(
                boxes, scores, names, features)
        ]

        tracker.predict()
        tracker.update(detections)

        tracked_bboxes = []
        for track in tracker.tracks:
            if not track.is_confirmed(
            ) or track.time_since_update > 1:  # 1 / 5
                continue
            bbox = track.to_tlbr()
            class_name = track.get_class()
            tracking_id = track.track_id
            index = key_list[val_list.index(class_name)]
            tracked_bboxes.append(bbox.tolist() + [tracking_id, index])

        image = utils.draw_bbox(frame,
                                tracked_bboxes,
                                classes=CLASSES,
                                tracking=True)

        image = cv2.putText(
            image,
            "Time: {:.2f}ms".format(sum(times) / len(times) * 1000),
            (0, 36),  # 24
            cv2.FONT_HERSHEY_SIMPLEX,
            1.5,
            (0, 0, 255),
            2)

        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        cv2.namedWindow("Detections", cv2.WINDOW_AUTOSIZE)
        cv2.imshow("Detections", image)
        if FLAGS.output:
            out.write(image)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    vid.release()
    if FLAGS.output:
        out.release()
    cv2.destroyAllWindows()
Example #11
0
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
    input_size = FLAGS.size
    image_path = FLAGS.image

    original_image = cv2.imread(image_path)
    original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
    original_image_size = original_image.shape[:2]

    image_data = utils.image_preporcess(np.copy(original_image),
                                        [input_size, input_size])
    image_data = image_data[np.newaxis, ...].astype(np.float32)
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv4(input_layer)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, i)
                bbox_tensors.append(bbox_tensor)

            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            feature_maps = YOLOv4(input_layer)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, i)
                bbox_tensors.append(bbox_tensor)

            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights(model, FLAGS.weights)

        model.summary()
        pred_bbox = model.predict(image_data)
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)
        interpreter.set_tensor(input_details[0]['index'], image_data)
        interpreter.invoke()
        pred_bbox = [
            interpreter.get_tensor(output_details[i]['index'])
            for i in range(len(output_details))
        ]

    for i, pred in enumerate(pred_bbox):
        conv_shape = pred.shape
        output_size = conv_shape[1]
        conv_raw_dxdy = pred[:, :, :, :, 0:2]
        conv_raw_dwdh = pred[:, :, :, :, 2:4]
        xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
        xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1),
                                 axis=2)  # [gx, gy, 1, 2]

        xy_grid = np.tile(tf.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
        xy_grid = xy_grid.astype(np.float)

        pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * STRIDES[i]
        # pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) * STRIDES[i]
        pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i])
        pred[:, :, :, :, 0:4] = tf.concat([pred_xy, pred_wh], axis=-1)

    pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox]
    pred_bbox = tf.concat(pred_bbox, axis=0)
    bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                     input_size, 0.3)
    bboxes = utils.nms(bboxes, 0.45, method='nms')

    image = utils.draw_bbox(original_image, bboxes)
    image = Image.fromarray(image)
    image.show()
Example #12
0
def main(_argv):
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    for physical_device in physical_devices:
        tf.config.experimental.set_memory_growth(physical_device, True)

    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        XYSCALE = cfg.YOLO.XYSCALE_TINY
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY_V3, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        XYSCALE = cfg.YOLO.XYSCALE
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)

    CLASSES = utils.read_class_names(cfg.YOLO.CLASSES)
    NUM_CLASSES = len(CLASSES)
    input_size = FLAGS.size
    try:
        vid = cv2.VideoCapture(int(FLAGS.video))
    except:
        vid = cv2.VideoCapture(FLAGS.video)

    times = []
    if FLAGS.output:
        width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(vid.get(cv2.CAP_PROP_FPS))
        codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
        out = cv2.VideoWriter(FLAGS.output, codec, fps,
                              (width, height))  # TODO: switch to get vertical

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3_tiny(input_layer, NUM_CLASSES)
            else:
                feature_maps = YOLOv4_tiny(input_layer, NUM_CLASSES)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASSES, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASSES)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASSES, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASSES)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASSES, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) -
                                            1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()
        model.summary()
    elif FLAGS.framework == 'tflite':
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
    elif FLAGS.framework == 'trt':
        saved_model_loaded = tf.saved_model.load(FLAGS.weights,
                                                 tags=[tag_constants.SERVING])
        infer = saved_model_loaded.signatures['serving_default']

    logging.info("Model loaded!")
    while True:
        return_value, frame = vid.read()
        # frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)  # TODO: here
        if not return_value:
            logging.warning("Empty Frame")
            break

        frame_size = frame.shape[:2]
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        image_data = utils.image_preprocess(np.copy(frame),
                                            [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)

        prev_time = time.time()
        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        elif FLAGS.framework == 'tflite':
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [
                interpreter.get_tensor(output_details[i]['index'])
                for i in range(len(output_details))
            ]
        elif FLAGS.framework == 'trt':
            batched_input = tf.constant(image_data)
            pred_bbox = []
            result = infer(batched_input)
            for _, value in result.items():
                value = value.numpy()
                pred_bbox.append(value)
        curr_time = time.time()
        times.append(curr_time - prev_time)
        times = times[-20:]

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)
        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                         0.5)  # 0.25
        bboxes = utils.nms(bboxes, 0.213, method='nms')  # 0.213

        image = utils.draw_bbox(frame, bboxes, classes=CLASSES)
        image = cv2.putText(
            image,
            "Time: {:.2f}ms".format(sum(times) / len(times) * 1000),
            (0, 24),  # 24
            cv2.FONT_HERSHEY_SIMPLEX,
            0.7,
            (0, 0, 255),
            2)  # 0.7

        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        cv2.namedWindow("Detections", cv2.WINDOW_AUTOSIZE)
        cv2.imshow("Detections", image)

        if FLAGS.output:
            out.write(image)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    vid.release()
    if FLAGS.output:
        out.release()
    cv2.destroyAllWindows()
Example #13
0
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE

    config = ConfigProto()
    config.gpu_options.allow_growth = True
    session = InteractiveSession(config=config)
    input_size = FLAGS.size
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    if len(physical_devices) > 0:
        tf.config.experimental.set_memory_growth(physical_devices[0], True)
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)
    elif FLAGS.framework == 'trt':
        saved_model_loaded = tf.saved_model.load(FLAGS.weights,
                                                 tags=[tag_constants.SERVING])
        signature_keys = list(saved_model_loaded.signatures.keys())
        print(signature_keys)
        infer = saved_model_loaded.signatures['serving_default']

    logging.info('weights loaded')

    @tf.function
    def run_model(x):
        return model(x)

    # Test the TensorFlow Lite model on random input data.
    sum = 0
    original_image = cv2.imread(FLAGS.image)
    original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
    original_image_size = original_image.shape[:2]
    image_data = utils.image_preprocess(np.copy(original_image),
                                        [FLAGS.size, FLAGS.size])
    image_data = image_data[np.newaxis, ...].astype(np.float32)
    img_raw = tf.image.decode_image(open(FLAGS.image, 'rb').read(), channels=3)
    img_raw = tf.expand_dims(img_raw, 0)
    img_raw = tf.image.resize(img_raw, (FLAGS.size, FLAGS.size))
    batched_input = tf.constant(image_data)
    for i in range(1000):
        prev_time = time.time()
        # pred_bbox = model.predict(image_data)
        if FLAGS.framework == 'tf':
            pred_bbox = []
            result = run_model(image_data)
            for value in result:
                value = value.numpy()
                pred_bbox.append(value)
            if FLAGS.model == 'yolov4':
                pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS,
                                                    STRIDES, XYSCALE)
            else:
                pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS,
                                                    STRIDES)
            bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                             input_size, 0.25)
            bboxes = utils.nms(bboxes, 0.213, method='nms')
        elif FLAGS.framework == 'trt':
            pred_bbox = []
            result = infer(batched_input)
            for key, value in result.items():
                value = value.numpy()
                pred_bbox.append(value)
            if FLAGS.model == 'yolov4':
                pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS,
                                                    STRIDES, XYSCALE)
            else:
                pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS,
                                                    STRIDES)
            bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                             input_size, 0.25)
            bboxes = utils.nms(bboxes, 0.213, method='nms')
        # pred_bbox = pred_bbox.numpy()
        curr_time = time.time()
        exec_time = curr_time - prev_time
        if i == 0: continue
        sum += (1 / exec_time)
        info = str(i) + " time:" + str(round(
            exec_time, 3)) + " average FPS:" + str(round(
                sum / i, 2)) + ", FPS: " + str(round((1 / exec_time), 1))
        print(info)
Example #14
0
def main(_argv):
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    for physical_device in physical_devices:
        tf.config.experimental.set_memory_growth(physical_device, True)

    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        XYSCALE = cfg.YOLO.XYSCALE_TINY
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY_V3, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        XYSCALE = cfg.YOLO.XYSCALE
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)

    CLASSES = utils.read_class_names(cfg.YOLO.CLASSES)
    NUM_CLASSES = len(CLASSES)
    input_size = FLAGS.size
    image_path = FLAGS.image

    original_image = cv2.imread(image_path)
    original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
    original_image_size = original_image.shape[:2]

    image_data = utils.image_preprocess(np.copy(original_image),
                                        [input_size, input_size])
    image_data = image_data[np.newaxis, ...].astype(np.float32)

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3_tiny(input_layer, NUM_CLASSES)
            else:
                feature_maps = YOLOv4_tiny(input_layer, NUM_CLASSES)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASSES, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASSES)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASSES, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASSES)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASSES, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) -
                                            1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()
        model.summary()

        pred_bbox = model.predict(image_data)
    elif FLAGS.framework == 'tflite':
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()

        interpreter.set_tensor(input_details[0]['index'], image_data)
        interpreter.invoke()
        pred_bbox = [
            interpreter.get_tensor(output_details[i]['index'])
            for i in range(len(output_details))
        ]
    elif FLAGS.framework == 'trt':
        saved_model_loaded = tf.saved_model.load(FLAGS.weights,
                                                 tags=[tag_constants.SERVING])
        infer = saved_model_loaded.signatures['serving_default']

        batched_input = tf.constant(image_data)
        pred_bbox = []
        result = infer(batched_input)
        for _, value in result.items():
            value = value.numpy()
            pred_bbox.append(value)

    if FLAGS.model == 'yolov4':
        pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                            XYSCALE)
    else:
        pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)

    bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                     input_size, 0.5)  # 0.25
    bboxes = utils.nms(bboxes, 0.5, method='nms')  # 0.213

    image = utils.draw_bbox(original_image, bboxes, classes=CLASSES)
    image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
    cv2.imwrite(FLAGS.output, image)
Example #15
0
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    video_path = FLAGS.video

    print("Video from: ", video_path)
    vid = cv2.VideoCapture(video_path)

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)

                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) -
                                            1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()

        model.summary()
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    while True:
        return_value, frame = vid.read()
        if return_value:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image = Image.fromarray(frame)
        else:
            cv2.destroyWindow("result")
            raise ValueError("No image! Try with another video format")
            while cv2.getWindowProperty('window-name', 0) >= 0:
                keyCode = cv2.waitKey(50)
            #break
        frame_size = frame.shape[:2]
        image_data = utils.image_preprocess(np.copy(frame),
                                            [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)
        prev_time = time.time()

        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        else:
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [
                interpreter.get_tensor(output_details[i]['index'])
                for i in range(len(output_details))
            ]

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)

        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                         0.25)
        bboxes = utils.nms(bboxes, 0.213, method='nms')

        image = utils.draw_bbox(frame, bboxes)
        curr_time = time.time()
        exec_time = curr_time - prev_time
        result = np.asarray(image)
        info = "time: %.2f ms" % (1000 * exec_time)
        print(info)
        cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
        result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        cv2.imshow("result", result)
        if cv2.waitKey(1) & 0xFF == ord('q'): break
Example #16
0
def main(_argv):
    import os
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)

        model.summary()
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    while True:
        frames = pipeline.wait_for_frames()
        depth_frame = frames.get_depth_frame()

        # Align the depth frame to color frame
        aligned_frames = align.process(frames)

        # Get aligned frames
        depth_frame = aligned_frames.get_depth_frame()
        color_frame = aligned_frames.get_color_frame()
        if not depth_frame or not color_frame:
            continue

        depth_intrin = depth_frame.profile.as_video_stream_profile().intrinsics
        color_intrin = color_frame.profile.as_video_stream_profile().intrinsics
        depth_to_color_extrin = depth_frame.profile.get_extrinsics_to(
            color_frame.profile)

        depth_image = np.asanyarray(depth_frame.get_data())
        color_image = np.asanyarray(color_frame.get_data())

        frame = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
        image = Image.fromarray(frame)

        frame_size = frame.shape[:2]
        image_data = utils.image_preprocess(np.copy(frame),
                                            [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)
        prev_time = time.time()

        scaled_depth = cv2.convertScaleAbs(depth_image, alpha=0.08)
        depth_colormap = cv2.applyColorMap(scaled_depth, cv2.COLORMAP_JET)

        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        else:
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [
                interpreter.get_tensor(output_details[i]['index'])
                for i in range(len(output_details))
            ]

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)

        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                         0.25)
        bboxes = utils.nms(bboxes, 0.213, method='nms')

        view2d = np.zeros((480, 640, 3), np.uint8)

        for box in bboxes:
            x_mid = int((box[0] + box[2]) / 2)
            y_mid = int((box[1] + box[3]) / 2)
            pixel_depths = []
            for i in range(3):
                for j in range(3):
                    pixel_depths.append(
                        depth_frame.get_distance(int(x_mid + i - 1),
                                                 int(y_mid + j - 1)))
            object_depth = statistics.median(pixel_depths)
            object_point = rs.rs2_deproject_pixel_to_point(
                depth_intrin, [x_mid, y_mid], object_depth)
            if box[5] == 67.0:
                print('found phone')
                if object_depth == 0.0:
                    print('depth not found')
                depth_colormap[max(0, min(y_mid, 479)),
                               max(0, min(x_mid, 639))] = [0, 255, 0]
                view2d[max(0, min(480 - int(object_point[2] * 350), 479)),
                       max(0, min(int(object_point[0] * 350) +
                                  320, 639))] = [0, 255, 0]
            #print('x_min', box[0])
            #print('y_min', box[1])
            #print('x_max', box[2])
            #print('y_max', box[3])
            #print('probability', box[4])
            #print('object_id', box[5])
            #print('point', object_point)
            #print('-----')

        #curr_time = time.time()
        #exec_time = curr_time - prev_time
        #info = "time: %.2f ms" %(1000*exec_time)
        #print(info)
        cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
        image_color = utils.draw_bbox(frame, bboxes)
        result = cv2.cvtColor(image_color, cv2.COLOR_RGB2BGR)
        image_depth = utils.draw_bbox(depth_colormap, bboxes)
        images = np.hstack((view2d, image_depth))
        cv2.imshow("result", images)
        print('-----')
        if cv2.waitKey(1) & 0xFF == ord('q'):
            pipeline.stop()
            break
    def __init__(self, framework='tf', size=608, tiny=False, model='yolov4'):
        self.framework = framework
        self.weights = 'weights'  #None#weights
        self.size = size
        self.tiny = tiny
        self.model = model
        self.instanciated_model = None

        # Instanciate model

        print('Tiny ', self.tiny)

        #image_path = self.image
        NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
        input_size = self.size
        if self.framework == 'tf':
            input_layer = tf.keras.layers.Input([input_size, input_size, 3])
            if self.tiny:
                if self.model == 'yolov3':
                    feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
                else:
                    feature_maps = YOLOv4_tiny(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                model.summary()
                utils.load_weights_tiny(model, self.weights, self.model)
            else:
                if self.model == 'yolov3':
                    feature_maps = YOLOv3(input_layer, NUM_CLASS)
                    bbox_tensors = []
                    for i, fm in enumerate(feature_maps):
                        bbox_tensor = decode(fm, NUM_CLASS, i)
                        bbox_tensors.append(bbox_tensor)
                    model = tf.keras.Model(input_layer, bbox_tensors)
                    utils.load_weights_v3(model, self.weights)
                elif self.model == 'yolov4':
                    feature_maps = YOLOv4(input_layer, NUM_CLASS)
                    bbox_tensors = []
                    for i, fm in enumerate(feature_maps):
                        bbox_tensor = decode(fm, NUM_CLASS, i)
                        bbox_tensors.append(bbox_tensor)
                    model = tf.keras.Model(input_layer, bbox_tensors)

                    # Check if files have already been downloaded
                    yolov4_weights_path = os.path.join(self.weights,
                                                       'yolov4.weights')
                    #yolov4_weights_path = os.path.join(Path(os.path.realpath(__file__)).parent,'data/yolov4.weights')

                    if not os.path.exists(yolov4_weights_path):
                        print('Downloading weights file')
                        self.weights = self.download('yolov4.weights',
                                                     local_path=self.weights)
                        print('Weight file was downloaded to', self.weights)
                    else:
                        print('Weights file already downloaded')
                        self.weights = yolov4_weights_path

                    if self.weights.split(".")[len(self.weights.split(".")) -
                                               1] == "weights":
                        utils.load_weights(model, self.weights)
                    else:
                        model.load_weights(self.weights).expect_partial()

                self.instanciated_model = model

        else:
            # Load TFLite model and allocate tensors.
            interpreter = tf.lite.Interpreter(model_path=self.weights)
            interpreter.allocate_tensors()

            self.instanciated_model = interpreter
Example #18
0
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    video_path = FLAGS.video

    print("Video from: ", video_path)
    vid = cv2.VideoCapture(video_path)

    height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = int(vid.get(cv2.CAP_PROP_FPS))

    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    output_movie = cv2.VideoWriter('output' + str(round(time.time())) + '.avi',
                                   fourcc, fps, (width, height))

    # initialize our centroid tracker
    ct = CentroidTracker()

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)

                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) -
                                            1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()

        model.summary()
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    while True:
        return_value, frame = vid.read()

        if not return_value:  #verify if the last frame was empty
            print("end of the video file...")
            break

        if return_value:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image = Image.fromarray(frame)
        else:
            raise ValueError("No image! Try with another video format")
        frame_size = frame.shape[:2]
        image_data = utils.image_preprocess(np.copy(frame),
                                            [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)
        prev_time = time.time()

        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        else:
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [
                interpreter.get_tensor(output_details[i]['index'])
                for i in range(len(output_details))
            ]

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)

        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                         0.40)
        #bboxes = utils.nms(bboxes, 0.213, method='nms')

        #coord list of all boxes detected in this frame
        rects = bboxes[:, 0:4]

        # box rectangles
        objects = ct.update(rects)
        # loop over the tracked objects
        for (objectID, centroid) in objects.items():
            # draw both the ID of the object and the centroid of the
            # object on the output frame
            text = "ID {}".format(objectID)
            cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
            cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1)

        # image = utils.draw_bbox(frame, bboxes)
        # curr_time = time.time()
        # exec_time = curr_time - prev_time
        # result = np.asarray(image)
        # info = "time: %.2f ms" %(1000*exec_time)
        # print(info)
        # # cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
        # result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        # # cv2.imshow("result", result)

        output_movie.write(frame)
        print("writing frame")

        if cv2.waitKey(1) & 0xFF == ord('q'): break
    vid.release()
    output_movie.release()
    cv2.destroyAllWindows()
Example #19
0
def main(_argv):
    #Yolo-tiny버전이 아닌지 if문을 통해 구분한다. 
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        #tiny버전이 아닐 경우 Yolo-v4모델을 가져오고 anchor박스의 정보도 함께 가져온다.
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)

    #클래스개수, 박스의 XYSCALE을 Yolo-v4의 cfg파일에서 불러오고 input_size와 image_path를 미리 정의한 flags객체의 size와 image값으로 정의한다.
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    image_path = FLAGS.image

    #cv2모듈을 통해 이미지를 불러오고 불러온 이미지를 BGR이미지를 RGB로 바꿔준다.
    #이는 컬러 사진을 opencv에서는 BGR순서로 저장하는데 matplotlib에서는 RGB로 저장하기 때문이다.
    original_image = cv2.imread(image_path)
    original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
    original_image_size = original_image.shape[:2]

    #이미지 데이터들을 배열로 바꿔주고 데이터타입을 float32로 변환해준다.
    image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
    image_data = image_data[np.newaxis, ...].astype(np.float32)
    #framework가 tf로 정의된 경우 FLAGS.model이 어떻게 정의되었는지에 따라 불러오는 모델이 다르다.
    #지금의 경우는 Yolo-v4를 다루고 있으므로 FLAGS.model이 yolov4로 정의된 경우만 보겠다.
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)

            #YOLOv4에 input 레이어와 클래스를 넣어주어 feature map을 생성하고 바운딩 박스를 예측하기 위한 리스트를 선언해준다.
            #이후 반복문을 통해 예측된 바운딩박스의 좌표를 리스트에 넣어준 뒤 이것을 model에 input레이어와 함께 넣어 model을 생성해준다.
            #그 다음 미리 학습된 weights값들을 load해온다.    
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)

        model.summary()
        #이후 원래 이미지 데이터에서 예측된 바운딩 박스를 표시해준다.
        pred_bbox = model.predict(image_data)
    else:.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)
        interpreter.set_tensor(input_details[0]['index'], image_data)
        interpreter.invoke()
        pred_bbox = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
        
    #이후 표시된 바운딩 박스 중 유효한 바운딩 박스들만 남기는 작업을 한 후 최종적으로 pred_bbox에 저장한다.
    if FLAGS.model == 'yolov4':
        pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE)
    else:
        pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)
    bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25)
    bboxes = utils.nms(bboxes, 0.213, method='nms')

    #cv2모듈을 사용하여 예측한 바운딩박스가 표시된 이미지를 출력한다.
    image = utils.draw_bbox(original_image, bboxes)
    image = Image.fromarray(image)
    image.show()
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    video_path = FLAGS.video

    print("Video from: ", video_path)
    vid = cv2.VideoCapture(video_path)

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)

                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) -
                                            1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()

        # model.summary()
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    # setup for output video
    width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH) + 0.5)
    height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT) + 0.5)
    size = (width, height)
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter('/content/output-vid.avi', fourcc, 20.0, size)
    total_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
    print('Total Frames:', total_frames)

    while True:
        return_value, frame = vid.read()
        n_frame = int(vid.get(cv2.CAP_PROP_POS_FRAMES))

        if return_value:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image = Image.fromarray(frame)
        else:
            out.release()
            if (total_frames - 1 != n_frame):
                raise ValueError("No image! Try with another video format")
            print("Finished processing video.")
            break
        frame_size = frame.shape[:2]
        image_data = utils.image_preporcess(np.copy(frame),
                                            [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)
        prev_time = time.time()

        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        else:
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [
                interpreter.get_tensor(output_details[i]['index'])
                for i in range(len(output_details))
            ]

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)

        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                         0.25)
        bboxes = utils.nms(bboxes, 0.213, method='nms')

        image = utils.draw_bbox(frame, bboxes)
        curr_time = time.time()
        exec_time = curr_time - prev_time
        result = np.asarray(image)
        info = "time: %.2f ms" % (1000 * exec_time)
        print(info)

        # write modified frame to video
        resultFrame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        out.write(resultFrame)

        # save modified frames
        print("Frame:", n_frame)
        cv2.imwrite("frame{}.jpg".format(n_frame), resultFrame)

        if cv2.waitKey(1) & 0xFF == ord('q'): break
Example #21
0
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    video_path = FLAGS.video

    print("Video from: ", video_path )
    vid = cv2.VideoCapture(video_path)
    height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = int(vid.get(cv2.CAP_PROP_FPS))

    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    output_movie = cv2.VideoWriter('output' + str(round(time.time()))+ '.avi', fourcc, fps, (width, height))
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                
                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()

        model.summary()
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    total_passed_vehicle = 0
    speed = "waiting..."
    direction = "waiting..."
    size = "waiting..."
    color = "waiting..."
    counting_mode = "..."
    width_heigh_taken = True

    while True:
        return_value, frame = vid.read()
        if return_value:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image = Image.fromarray(frame)
        else:
            raise ValueError("No image! Try with another video format")
        frame_size = frame.shape[:2]
        image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)
        prev_time = time.time()

        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        else:
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)

        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.25)
        boxes = bboxes[:, 0:4]
        scores = bboxes[:, 4]
        classes = bboxes[:, 5]
        #bboxes = utils.nms(bboxes, 0.213, method='nms')
        roi = 450
        category_index = utils.read_class_names(cfg.YOLO.CLASSES)
        counter, csv_line, counting_mode = vis_util.visualize_boxes_and_labels_on_image_array_y_axis(vid.get(1),
                                                                                                            frame,
                                                                                                            1,
                                                                                                            False,
                                                                                                            np.squeeze(boxes),
                                                                                                            np.squeeze(classes).astype(np.int32),
                                                                                                            np.squeeze(scores),
                                                                                                            category_index,
                                                                                                            y_reference = roi,
                                                                                                            use_normalized_coordinates=True,
                                                                                                            line_thickness=4)


        if counter == 1:
            cv2.line(frame, (roi, 0), (roi, height), (0, 0xFF, 0), 5)
        else:
            cv2.line(frame, (roi, 0), (roi, height), (0, 0, 0xFF), 5)

        total_passed_vehicle = total_passed_vehicle + counter

        # insert information text to video frame
        font = cv2.FONT_HERSHEY_SIMPLEX
        cv2.putText(
            input_frame,
            'Veiculos Detectados: ' + str(total_passed_vehicle),
            (10, 35),
            font,
            0.8,
            (0, 0xFF, 0xFF),
            2,
            cv2.FONT_HERSHEY_SIMPLEX,
            )               
        
        cv2.putText(
            input_frame,
            'Linha de ROI',
            (545, roi-10),
            font,
            0.6,
            (0, 0, 0xFF),
            2,
            cv2.LINE_AA,
            )
        # image = utils.draw_bbox(frame, bboxes)
        # curr_time = time.time()
        # exec_time = curr_time - prev_time
        # result = np.asarray(image)
        # info = "time: %.2f ms" %(1000*exec_time)
        # print(info)
        # cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
        # result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        # cv2.imshow("result", result)
        # if cv2.waitKey(1) & 0xFF == ord('q'): break
        output_movie.write(frame)
        print ("writing frame")

        if cv2.waitKey(1) & 0xFF == ord('q'): break
    vid.release()   
    output_movie.release()
    cv2.destroyAllWindows()
Example #22
0
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
def main(_argv):
    INPUT_SIZE = FLAGS.size
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    CLASSES = utils.read_class_names(cfg.YOLO.CLASSES)
    predicted_dir_path = './mAP/predicted'
    ground_truth_dir_path = './mAP/ground-truth'
    if os.path.exists(predicted_dir_path): shutil.rmtree(predicted_dir_path)
    if os.path.exists(ground_truth_dir_path):
        shutil.rmtree(ground_truth_dir_path)
    if os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH):
        shutil.rmtree(cfg.TEST.DECTECTED_IMAGE_PATH)

    os.mkdir(predicted_dir_path)
    os.mkdir(ground_truth_dir_path)
    os.mkdir(cfg.TEST.DECTECTED_IMAGE_PATH)

    # Build Model
    if FLAGS.framework == "tf":
        input_layer = tf.keras.layers.Input([INPUT_SIZE, INPUT_SIZE, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv4(input_layer)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, i)
                bbox_tensors.append(bbox_tensor)

            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            feature_maps = YOLOv4(input_layer)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, i)
                bbox_tensors.append(bbox_tensor)

            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights(model, FLAGS.weights)
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)
    num_lines = sum(1 for line in open(FLAGS.annotation_path))
    with open(cfg.TEST.ANNOT_PATH, 'r') as annotation_file:
        for num, line in enumerate(annotation_file):
            annotation = line.strip().split()
            image_path = annotation[0]
            image_name = image_path.split('/')[-1]
            image = cv2.imread(image_path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            bbox_data_gt = np.array(
                [list(map(int, box.split(','))) for box in annotation[1:]])

            if len(bbox_data_gt) == 0:
                bboxes_gt = []
                classes_gt = []
            else:
                bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4]
            ground_truth_path = os.path.join(ground_truth_dir_path,
                                             str(num) + '.txt')

            print('=> ground truth of %s:' % image_name)
            num_bbox_gt = len(bboxes_gt)
            with open(ground_truth_path, 'w') as f:
                for i in range(num_bbox_gt):
                    class_name = CLASSES[classes_gt[i]]
                    xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i]))
                    bbox_mess = ' '.join([class_name, xmin, ymin, xmax, ymax
                                          ]) + '\n'
                    f.write(bbox_mess)
                    print('\t' + str(bbox_mess).strip())
            print('=> predict result of %s:' % image_name)
            predict_result_path = os.path.join(predicted_dir_path,
                                               str(num) + '.txt')
            # Predict Process
            image_size = image.shape[:2]
            image_data = utils.image_preporcess(np.copy(image),
                                                [INPUT_SIZE, INPUT_SIZE])
            image_data = image_data[np.newaxis, ...].astype(np.float32)

            if FLAGS.framework == "tf":
                pred_bbox = model.predict(image_data)
            else:
                interpreter.set_tensor(input_details[0]['index'], image_data)
                interpreter.invoke()
                pred_bbox = [
                    interpreter.get_tensor(output_details[i]['index'])
                    for i in range(len(output_details))
                ]
            for i, pred in enumerate(pred_bbox):
                conv_shape = pred.shape
                output_size = conv_shape[1]
                conv_raw_dxdy = pred[:, :, :, :, 0:2]
                conv_raw_dwdh = pred[:, :, :, :, 2:4]
                xy_grid = np.meshgrid(np.arange(output_size),
                                      np.arange(output_size))
                xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1),
                                         axis=2)  # [gx, gy, 1, 2]

                xy_grid = np.tile(tf.expand_dims(xy_grid, axis=0),
                                  [1, 1, 1, 3, 1])
                xy_grid = xy_grid.astype(np.float)

                pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * STRIDES[i]
                # pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) * STRIDES[i]
                pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i])
                pred[:, :, :, :, 0:4] = tf.concat([pred_xy, pred_wh], axis=-1)
            pred_bbox = [
                tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox
            ]
            pred_bbox = tf.concat(pred_bbox, axis=0)
            bboxes = utils.postprocess_boxes(pred_bbox, image_size, INPUT_SIZE,
                                             cfg.TEST.SCORE_THRESHOLD)
            bboxes = utils.nms(bboxes, cfg.TEST.IOU_THRESHOLD, method='nms')

            if cfg.TEST.DECTECTED_IMAGE_PATH is not None:
                image = utils.draw_bbox(image, bboxes)
                cv2.imwrite(cfg.TEST.DECTECTED_IMAGE_PATH + image_name, image)

            with open(predict_result_path, 'w') as f:
                for bbox in bboxes:
                    coor = np.array(bbox[:4], dtype=np.int32)
                    score = bbox[4]
                    class_ind = int(bbox[5])
                    class_name = CLASSES[class_ind]
                    score = '%.4f' % score
                    xmin, ymin, xmax, ymax = list(map(str, coor))
                    bbox_mess = ' '.join(
                        [class_name, score, xmin, ymin, xmax, ymax]) + '\n'
                    f.write(bbox_mess)
                    print('\t' + str(bbox_mess).strip())
            print(num, num_lines)
def main(_argv):
    print('Arguments', _argv)
    print('Flags', flags)
    FLAGS.tiny = False
    print('Tiny ', FLAGS.tiny)
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
        XYSCALE = cfg.YOLO.XYSCALE_TINY
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
        XYSCALE = cfg.YOLO.XYSCALE
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    input_size = FLAGS.size
    image_path = FLAGS.image

    original_image = cv2.imread(image_path)
    print('image:', original_image)
    original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
    original_image_size = original_image.shape[:2]

    image_data = utils.image_preprocess(np.copy(original_image),
                                        [input_size, input_size])
    image_data = image_data[np.newaxis, ...].astype(np.float32)
    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            else:
                feature_maps = YOLOv4_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            model.summary()
            utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)

                if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) -
                                            1] == "weights":
                    utils.load_weights(model, FLAGS.weights)
                else:
                    model.load_weights(FLAGS.weights).expect_partial()

        model.summary()
        pred_bbox = model.predict(image_data)
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)
        interpreter.set_tensor(input_details[0]['index'], image_data)
        interpreter.invoke()
        pred_bbox = [
            interpreter.get_tensor(output_details[i]['index'])
            for i in range(len(output_details))
        ]

    if FLAGS.model == 'yolov4':
        if FLAGS.tiny:
            pred_bbox = utils.postprocess_bbbox(pred_bbox,
                                                ANCHORS,
                                                STRIDES,
                                                XYSCALE,
                                                RESIZE=1.5)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
    else:
        pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)
    bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                     input_size, 0.25)
    bboxes = utils.nms(bboxes, 0.213, method='nms')

    image = utils.draw_bbox(original_image, bboxes)
    image = Image.fromarray(image)
    #image.show()

    print('Image path', image_path)
    print('Type Image path', type(image_path))
    print('Bboxes type', type(bboxes))

    classes = utils.read_class_names(cfg.YOLO.CLASSES)
    list_bboxes = []

    for i, bbox in enumerate(bboxes):
        coor = np.array(bbox[:4], dtype=np.int32)
        score = bbox[4]
        class_ind = int(bbox[5])
        #print('type bbox',type(bbox))
        #print('bbox',bbox[:4])
        #print('coor',list(coor))
        bbox_info = {
            'coor': list(coor),
            'probability': score,
            'class': classes[class_ind]
        }
        list_bboxes.append(bbox_info)

    try:
        output_name = os.path.join('results/out_' +
                                   os.path.basename(image_path))
        image.save(output_name)
        #cv2.imwrite(output_name,img)
        print('Img saved to', output_name)

        output = pd.DataFrame(list_bboxes)
        print('image_path', image_path)
        output_name = '.'.join(output_name.split('.')[:2]) + '.xlsx'
        #output_name = 'results/out_'+image_path.split('\\')[-1].split('.')[0]+'.xlsx'
        print('output_name', output_name)
        output.to_excel(output_name)

    except Exception as e:
        print(e)
Example #25
0
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    image_path = FLAGS.image

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    sock_receiver = SocketNumpyArray()
    sock_receiver.initalize_receiver(9995)

    while True:
        start_time = time.time()
        print('Waiting frame')
        frame = sock_receiver.receive_array()
        print('Took frame')
        frame = process(frame, input_size, model, FLAGS, ANCHORS, STRIDES,
                        XYSCALE)
        print("FPS: ", 1.0 / (time.time() - start_time))
        # Display
        cv2.imshow('frame', frame)
        cv2.waitKey(1)
def save_tflite():
    input_layer = tf.keras.layers.Input(
        [FLAGS.input_size, FLAGS.input_size, 3])
    if FLAGS.tiny:
        feature_maps = YOLOv4(input_layer)
        bbox_tensors = []
        for i, fm in enumerate(feature_maps):
            bbox_tensor = decode(fm, i)
            bbox_tensors.append(bbox_tensor)

        model = tf.keras.Model(input_layer, bbox_tensors)
        model.summary()
        utils.load_weights_tiny(model, FLAGS.weights)
    else:
        feature_maps = YOLOv4(input_layer)
        bbox_tensors = []
        for i, fm in enumerate(feature_maps):
            bbox_tensor = decode(fm, i)
            bbox_tensors.append(bbox_tensor)

        model = tf.keras.Model(input_layer, bbox_tensors)
        model.summary()
        utils.load_weights(model, FLAGS.weights)

    converter = tf.lite.TFLiteConverter.from_keras_model(model)
    if FLAGS.quantize_mode == 'int8':
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        # converter.default_ranges_stats = (0, 6)
        # converter.inference_type = tf.compat.v1.lite.constants.QUANTIZED_UINT8
        # converter.output_format = tf.compat.v1.lite.constants.TFLITE
        # converter.allow_custom_ops = True
        # converter.quantized_input_stats = {"input0": (0., 1.)}

        # converter.optimizations = [tf.lite.Optimize.DEFAULT]
        # converter.inference_input_type = tf.compat.v1.lite.constants.QUANTIZED_UINT8
        # converter.inference_output_type = tf.compat.v1.lite.constants.QUANTIZED_UINT8

        # converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
        # converter.inference_input_type = tf.uint8
        # converter.inference_output_type = tf.uint8
    elif FLAGS.quantize_mode == 'float16':
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        converter.target_spec.supported_types = [
            tf.compat.v1.lite.constants.FLOAT16
        ]
    elif FLAGS.quantize_mode == 'full_int8':
        converter.target_spec.supported_ops = [
            tf.lite.OpsSet.TFLITE_BUILTINS_INT8
        ]
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        converter.target_spec.supported_ops = [
            tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS
        ]
        converter.allow_custom_ops = True
        converter.representative_dataset = representative_data_gen

    tflite_model = converter.convert()
    open(FLAGS.output, 'wb').write(tflite_model)

    # tflite_model = converter.convert()
    # tf.GFile(FLAGS.output, "wb").write(tflite_model)

    logging.info("model saved to: {}".format(FLAGS.output))
Example #27
0
def main(_argv):
    import os
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    video_path = FLAGS.video

    if video_path == 'none':
        possible_camera_index = [5, 6, 7, 8]
        print("Searching for camera...")
        for camera_index in possible_camera_index:
            vid = cv2.VideoCapture(camera_index)
            return_value, frame = vid.read()
            if frame is not None:
                print("Camera found at index", camera_index)
                break
    else:
        print("Video from: ", video_path)
        vid = cv2.VideoCapture(video_path)

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)

        model.summary()
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    while True:
        return_value, frame = vid.read()
        if return_value:
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            image = Image.fromarray(frame)
        else:
            raise ValueError("No image! Try with another video format")
        frame_size = frame.shape[:2]
        image_data = utils.image_preprocess(np.copy(frame),
                                            [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)
        prev_time = time.time()

        if FLAGS.framework == 'tf':
            pred_bbox = model.predict(image_data)
        else:
            interpreter.set_tensor(input_details[0]['index'], image_data)
            interpreter.invoke()
            pred_bbox = [
                interpreter.get_tensor(output_details[i]['index'])
                for i in range(len(output_details))
            ]

        if FLAGS.model == 'yolov4':
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES,
                                                XYSCALE)
        else:
            pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES)

        bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size,
                                         0.25)
        bboxes = utils.nms(bboxes, 0.213, method='nms')

        for box in bboxes:
            print('x_min', box[0])
            print('y_min', box[1])
            print('x_max', box[2])
            print('y_max', box[3])
            print('probability', box[4])
            print('object_id', box[5])
            print('-----')

        image = utils.draw_bbox(frame, bboxes)
        curr_time = time.time()
        exec_time = curr_time - prev_time
        result = np.asarray(image)
        info = "time: %.2f ms" % (1000 * exec_time)
        print(info)
        cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
        result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        cv2.imshow("result", result)
        print(cv2.getWindowImageRect('result'))
        if cv2.waitKey(1) & 0xFF == ord('q'):
            vid.release()
            break
Example #28
0
def main(_argv):
    #TODO: add valid extensions
    directory = os.path.join(FLAGS.image_dir, "*")
    image_list = glob.glob(directory)

    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)

        model.summary()
    fieldnames = ["filename", "cars", "trucks", "buses"]
    with open(os.path.join(orig_dir, "result.csv"), 'w+', newline='') as f:
        # Attach a CSV writer to the file with the desired fieldnames
        writer = csv.DictWriter(f, fieldnames, delimiter=";")
        writer.writeheader()

        for image_path in image_list:
            if "_out" in image_path:
                continue
            d = {}
            original_image = cv2.imread(image_path)
            original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
            original_image_size = original_image.shape[:2]

            image_data = utils.image_preporcess(np.copy(original_image),
                                                [input_size, input_size])
            image_data = image_data[np.newaxis, ...].astype(np.float32)
            pred_bbox = model.predict(image_data)

            if FLAGS.model == 'yolov4':
                pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS,
                                                    STRIDES, XYSCALE)
            else:
                pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS,
                                                    STRIDES)
            bboxes = utils.postprocess_boxes(pred_bbox, original_image_size,
                                             input_size, 0.25)
            bboxes = utils.nms(bboxes, 0.213, method='nms')
            bboxes_filtered = bboxes.copy()
            l = len(bboxes)
            for i, bbox in enumerate(bboxes_filtered):
                bboxes_filtered = np.delete(bboxes_filtered, l - 1 - i, 0)
            cars = 0
            trucks = 0
            buses = 0
            for i, bbox in enumerate(bboxes):
                class_ind = int(bbox[5])
                if class_ind == 2 or class_ind == 5 or class_ind == 7:
                    bboxes_filtered = np.insert(bboxes_filtered,
                                                0,
                                                bbox,
                                                axis=0)
                if class_ind == 2:
                    cars += 1
                if class_ind == 5:
                    buses += 1
                if class_ind == 7:
                    trucks += 1
            d["filename"] = image_path
            d["cars"] = cars
            d["trucks"] = trucks
            d["buses"] = buses
            writer.writerow(d)
            image = utils.draw_bbox(original_image, bboxes_filtered)
            image = Image.fromarray(image)
            # image.show()
            image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
            cv2.imwrite(image_path.replace(".jpg", "_out.jpg"), image)
def main(_argv):
    if FLAGS.tiny:
        STRIDES = np.array(cfg.YOLO.STRIDES_TINY)
        ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny)
    else:
        STRIDES = np.array(cfg.YOLO.STRIDES)
        if FLAGS.model == 'yolov4':
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny)
        else:
            ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny)
    NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES))
    XYSCALE = cfg.YOLO.XYSCALE
    input_size = FLAGS.size
    image_path = FLAGS.image

    if FLAGS.framework == 'tf':
        input_layer = tf.keras.layers.Input([input_size, input_size, 3])
        if FLAGS.tiny:
            feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS)
            bbox_tensors = []
            for i, fm in enumerate(feature_maps):
                bbox_tensor = decode(fm, NUM_CLASS, i)
                bbox_tensors.append(bbox_tensor)
            model = tf.keras.Model(input_layer, bbox_tensors)
            utils.load_weights_tiny(model, FLAGS.weights)
        else:
            if FLAGS.model == 'yolov3':
                feature_maps = YOLOv3(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights_v3(model, FLAGS.weights)
            elif FLAGS.model == 'yolov4':
                feature_maps = YOLOv4(input_layer, NUM_CLASS)
                bbox_tensors = []
                for i, fm in enumerate(feature_maps):
                    bbox_tensor = decode(fm, NUM_CLASS, i)
                    bbox_tensors.append(bbox_tensor)
                model = tf.keras.Model(input_layer, bbox_tensors)
                utils.load_weights(model, FLAGS.weights)
    else:
        # Load TFLite model and allocate tensors.
        interpreter = tf.lite.Interpreter(model_path=FLAGS.weights)
        interpreter.allocate_tensors()
        # Get input and output tensors.
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        print(input_details)
        print(output_details)

    host = ''  # Symbolic name meaning all available interfaces
    port = 45678  # Arbitrary non-privileged port
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.bind((host, port))

    s.listen(1)
    print('Initializing connection')
    conn, addr = s.accept()
    print('Connected by', addr)
    data = (conn.recv(1024))
    data = json.loads(data.decode())

    # conn.sendall(json.dumps(data).encode())
    #print('Recived iniatializing data')
    shape = data.get("shape")
    shared_memory_name = data.get("name")
    type_data = data.get("type")
    object_to_find = data.get("object")

    # Attach to the existing shared memory block
    existing_shm = shared_memory.SharedMemory(name=shared_memory_name)
    # Note that a.shape is (6,) and a.dtype is np.int64 in this example
    previous = None
    frame = None
    # print('objeto a encontrar ' + object_to_find)
    print('Esperando imágenes')

    coords = np.empty(4, dtype=np.int32)
    while (True):
        start_time = time.time()
        # print('Waiting frame')
        data = (conn.recv(1024))
        if data == bytes('1', 'utf8'):
            previous = frame
            frame = np.ndarray(shape, dtype=type_data, buffer=existing_shm.buf)
            frame, object_found, coords = process(frame, input_size, model,
                                                  object_to_find, FLAGS,
                                                  ANCHORS, STRIDES, XYSCALE)
            cv2.imshow('frame', frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

            if (object_found):
                data = json.dumps({
                    "was_found": object_found,
                    "coords": coords
                })
            else:
                data = json.dumps({"was_found": object_found})

            conn.sendall(data.encode())
            #print("FPS: ", 1.0 / (time.time() - start_time))
    existing_shm.close()