def save_tf(): NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) else: print("model option can be only 'yolov3' or 'yolov4'.") return model.summary() model.save(FLAGS.output)
def main(_argv): NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) save_model(model) save_tflite(model) demo()
def save_tflite(): NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) input_layer = tf.keras.layers.Input([FLAGS.input_size, FLAGS.input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() # Save Model, including Frozen graph model.save('./model')
def save_tflite(): NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) input_layer = tf.keras.layers.Input( [FLAGS.input_size, FLAGS.input_size, 3]) if FLAGS.tiny: if FLAGS.model == 'yolov3': feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) else: feature_maps = YOLOv4_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() converter = tf.lite.TFLiteConverter.from_keras_model(model) if tf.__version__ >= '2.2.0': converter.experimental_new_converter = False if FLAGS.quantize_mode == 'int8': converter.optimizations = [tf.lite.Optimize.DEFAULT] elif FLAGS.quantize_mode == 'float16': converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [ tf.compat.v1.lite.constants.FLOAT16 ] elif FLAGS.quantize_mode == 'full_int8': converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS_INT8 ] converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS ] converter.allow_custom_ops = True converter.representative_dataset = representative_data_gen tflite_model = converter.convert() open(FLAGS.output, 'wb').write(tflite_model) logging.info("model saved to: {}".format(FLAGS.output))
def main(_argv): NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) input_size = FLAGS.size physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) logging.info('weights loaded') # Test the TensorFlow Lite model on random input data. sum = 0 for i in range(1000): img_raw = tf.image.decode_image(open(FLAGS.image, 'rb').read(), channels=3) original_image = cv2.imread(FLAGS.image) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preporcess(np.copy(original_image), [FLAGS.size, FLAGS.size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() pred_bbox = model.predict(image_data) # pred_bbox = pred_bbox.numpy() curr_time = time.time() exec_time = curr_time - prev_time if i == 0: continue sum += (1000 / (1000 * exec_time)) info = "average FPS:" + str(round(sum / i, 2)) + ", FPS: " + str( round((1000 / (1000 * exec_time)), 1)) print(info)
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size video_path = FLAGS.video print("Video from: ", video_path ) vid = cv2.VideoCapture(video_path) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors)
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size image_path = FLAGS.image original_image = cv2.imread(image_path) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() pred_bbox = model.predict(image_data) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') image = utils.draw_bbox(original_image, bboxes) image = Image.fromarray(image) image.show()
def main(_argv): INPUT_SIZE = FLAGS.size if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) CLASSES = utils.read_class_names(cfg.YOLO.CLASSES) predicted_dir_path = './mAP/predicted' ground_truth_dir_path = './mAP/ground-truth' if os.path.exists(predicted_dir_path): shutil.rmtree(predicted_dir_path) if os.path.exists(ground_truth_dir_path): shutil.rmtree(ground_truth_dir_path) if os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH): shutil.rmtree(cfg.TEST.DECTECTED_IMAGE_PATH) os.mkdir(predicted_dir_path) os.mkdir(ground_truth_dir_path) os.mkdir(cfg.TEST.DECTECTED_IMAGE_PATH) times = [] classes = [ 'Book', 'Bottle', 'Computer keyboard', 'Computer mouse', 'Laptop', 'Mobile phone', 'Backpack' ] # Build Model if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([INPUT_SIZE, INPUT_SIZE, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) num_lines = sum(1 for line in open(FLAGS.annotation_path)) with open(cfg.TEST.ANNOT_PATH, 'r') as annotation_file: for num, line in enumerate(annotation_file): annotation = line.strip().split() image_path = annotation[0] image_name = image_path.split('/')[-1] image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) bbox_data_gt = np.array( [list(map(float, box.split(','))) for box in annotation[1:]]) if len(bbox_data_gt) == 0: bboxes_gt = [] classes_gt = [] else: bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4] ground_truth_path = os.path.join(ground_truth_dir_path, str(num) + '.txt') current_class = '' print('=> ground truth of %s:' % image_name) num_bbox_gt = len(bboxes_gt) with open(ground_truth_path, 'w') as f: for i in range(num_bbox_gt): # esto class_name = CLASSES[classes_gt[i]] # esto if i == 0: current_class = class_name class_name = CLASSES[classes_gt[i]] if class_name == current_class: xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i])) bbox_mess = ' '.join( [class_name, xmin, ymin, xmax, ymax]) + '\n' f.write(bbox_mess) print('\t' + str(bbox_mess).strip()) print('=> predict result of %s:' % image_name) predict_result_path = os.path.join(predicted_dir_path, str(num) + '.txt') # Predict Process image_size = image.shape[:2] image_data = utils.image_preprocess(np.copy(image), [INPUT_SIZE, INPUT_SIZE]) image_data = image_data[np.newaxis, ...].astype(np.float32) if FLAGS.framework == "tf": startTime = time.time() pred_bbox = model.predict(image_data) times.append(time.time() - startTime) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov3': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) elif FLAGS.model == 'yolov4': XYSCALE = cfg.YOLO.XYSCALE pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE=XYSCALE) pred_bbox = tf.concat(pred_bbox, axis=0) bboxes = utils.postprocess_boxes(pred_bbox, image_size, INPUT_SIZE, cfg.TEST.SCORE_THRESHOLD) bboxes = utils.nms(bboxes, cfg.TEST.IOU_THRESHOLD, method='nms') if cfg.TEST.DECTECTED_IMAGE_PATH is not None: image = utils.draw_bbox(image, bboxes) cv2.imwrite(cfg.TEST.DECTECTED_IMAGE_PATH + image_name, image) with open(predict_result_path, 'w') as f: for bbox in bboxes: if (CLASSES[int(bbox[5])] in classes) and (current_class == CLASSES[int( bbox[5])]): coor = np.array(bbox[:4], dtype=np.int32) score = bbox[4] class_ind = int(bbox[5]) class_name = CLASSES[class_ind] score = '%.4f' % score xmin, ymin, xmax, ymax = list(map(str, coor)) bbox_mess = ' '.join( [class_name, score, xmin, ymin, xmax, ymax]) + '\n' f.write(bbox_mess) print('\t' + str(bbox_mess).strip()) print(num, num_lines) print("Elapsed time: " + str(sum(times) / len(times)))
def main(_argv): physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) trainset = Dataset(is_training=True) testset = Dataset(is_training=False) logdir = "./data/log" isfreeze = False steps_per_epoch = len(trainset) first_stage_epochs = cfg.TRAIN.FISRT_STAGE_EPOCHS second_stage_epochs = cfg.TRAIN.SECOND_STAGE_EPOCHS global_steps = tf.Variable(1, trainable=False, dtype=tf.int64) warmup_steps = cfg.TRAIN.WARMUP_EPOCHS * steps_per_epoch total_steps = (first_stage_epochs + second_stage_epochs) * steps_per_epoch # train_steps = (first_stage_epochs + second_stage_epochs) * steps_per_period input_layer = tf.keras.layers.Input([cfg.TRAIN.INPUT_SIZE, cfg.TRAIN.INPUT_SIZE, 3]) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) STRIDES = np.array(cfg.YOLO.STRIDES) IOU_LOSS_THRESH = cfg.YOLO.IOU_LOSS_THRESH XYSCALE = cfg.YOLO.XYSCALE ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode_train(fm, NUM_CLASS, STRIDES, ANCHORS, i) bbox_tensors.append(fm) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode_train(fm, NUM_CLASS, STRIDES, ANCHORS, i) bbox_tensors.append(fm) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode_train(fm, NUM_CLASS, STRIDES, ANCHORS, i, XYSCALE) bbox_tensors.append(fm) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights == None: print("Training from scratch") else: if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": if FLAGS.tiny: utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': utils.load_weights_v3(model, FLAGS.weights) else: utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights) print('Restoring weights from: %s ... ' % FLAGS.weights) optimizer = tf.keras.optimizers.Adam() if os.path.exists(logdir): shutil.rmtree(logdir) writer = tf.summary.create_file_writer(logdir) def train_step(image_data, target): with tf.GradientTape() as tape: pred_result = model(image_data, training=True) giou_loss = conf_loss = prob_loss = 0 # optimizing process for i in range(3): conv, pred = pred_result[i * 2], pred_result[i * 2 + 1] loss_items = compute_loss(pred, conv, target[i][0], target[i][1], STRIDES=STRIDES, NUM_CLASS=NUM_CLASS, IOU_LOSS_THRESH=IOU_LOSS_THRESH, i=i) giou_loss += loss_items[0] conf_loss += loss_items[1] prob_loss += loss_items[2] total_loss = giou_loss + conf_loss + prob_loss gradients = tape.gradient(total_loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) tf.print("=> STEP %4d lr: %.6f giou_loss: %4.2f conf_loss: %4.2f " "prob_loss: %4.2f total_loss: %4.2f" % (global_steps, optimizer.lr.numpy(), giou_loss, conf_loss, prob_loss, total_loss)) # update learning rate global_steps.assign_add(1) if global_steps < warmup_steps: lr = global_steps / warmup_steps * cfg.TRAIN.LR_INIT else: lr = cfg.TRAIN.LR_END + 0.5 * (cfg.TRAIN.LR_INIT - cfg.TRAIN.LR_END) * ( (1 + tf.cos((global_steps - warmup_steps) / (total_steps - warmup_steps) * np.pi)) ) optimizer.lr.assign(lr.numpy()) # writing summary data with writer.as_default(): tf.summary.scalar("lr", optimizer.lr, step=global_steps) tf.summary.scalar("loss/total_loss", total_loss, step=global_steps) tf.summary.scalar("loss/giou_loss", giou_loss, step=global_steps) tf.summary.scalar("loss/conf_loss", conf_loss, step=global_steps) tf.summary.scalar("loss/prob_loss", prob_loss, step=global_steps) writer.flush() def test_step(image_data, target): with tf.GradientTape() as tape: pred_result = model(image_data, training=True) giou_loss = conf_loss = prob_loss = 0 # optimizing process for i in range(3): conv, pred = pred_result[i * 2], pred_result[i * 2 + 1] loss_items = compute_loss(pred, conv, target[i][0], target[i][1], STRIDES=STRIDES, NUM_CLASS=NUM_CLASS, IOU_LOSS_THRESH=IOU_LOSS_THRESH, i=i) giou_loss += loss_items[0] conf_loss += loss_items[1] prob_loss += loss_items[2] total_loss = giou_loss + conf_loss + prob_loss tf.print("=> TEST STEP %4d giou_loss: %4.2f conf_loss: %4.2f " "prob_loss: %4.2f total_loss: %4.2f" % (global_steps, giou_loss, conf_loss, prob_loss, total_loss)) for epoch in range(first_stage_epochs + second_stage_epochs): if epoch < first_stage_epochs: if not isfreeze: isfreeze = True for name in ['conv2d_93', 'conv2d_101', 'conv2d_109']: freeze = model.get_layer(name) freeze_all(freeze) elif epoch >= first_stage_epochs: if isfreeze: isfreeze = False for name in ['conv2d_93', 'conv2d_101', 'conv2d_109']: freeze = model.get_layer(name) unfreeze_all(freeze) for image_data, target in trainset: train_step(image_data, target) for image_data, target in testset: test_step(image_data, target) model.save_weights("./checkpoints/yolov4")
def main(_argv): physical_devices = tf.config.experimental.list_physical_devices('GPU') for physical_device in physical_devices: tf.config.experimental.set_memory_growth(physical_device, True) if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) XYSCALE = cfg.YOLO.XYSCALE_TINY if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY_V3, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) XYSCALE = cfg.YOLO.XYSCALE if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) CLASSES = utils.read_class_names(cfg.YOLO.CLASSES) NUM_CLASSES = len(CLASSES) input_size = FLAGS.size try: vid = cv2.VideoCapture(int(FLAGS.video)) except: vid = cv2.VideoCapture(FLAGS.video) times = [] if FLAGS.output: width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height)) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: if FLAGS.model == 'yolov3': feature_maps = YOLOv3_tiny(input_layer, NUM_CLASSES) else: feature_maps = YOLOv4_tiny(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() model.summary() elif FLAGS.framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() elif FLAGS.framework == 'trt': saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] max_cosine_distance = 0.7 # 0.5 / 0.7 nn_budget = None model_filename = './weights/tracker/mars-small128.pb' encoder = gdet.create_box_encoder(model_filename, batch_size=1) metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget) tracker = Tracker(metric) key_list = list(CLASSES.keys()) val_list = list(CLASSES.values()) Track_only = [] logging.info("Models loaded!") while True: return_value, frame = vid.read() if not return_value: logging.warning("Empty Frame") break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame_size = frame.shape[:2] image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) t1 = time.time() if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) elif FLAGS.framework == 'tflite': interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] elif FLAGS.framework == 'trt': batched_input = tf.constant(image_data) pred_bbox = [] result = infer(batched_input) for _, value in result.items(): value = value.numpy() pred_bbox.append(value) t2 = time.time() times.append(t2 - t1) times = times[-20:] ms = sum(times) / len(times) * 1000 fps = 1000 / ms if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.5) # 0.25 bboxes = utils.nms(bboxes, 0.5, method='nms') # 0.213 boxes, scores, names = [], [], [] for bbox in bboxes: if len(Track_only) != 0 and CLASSES[int( bbox[5])] in Track_only or len(Track_only) == 0: boxes.append([ bbox[0].astype(int), bbox[1].astype(int), bbox[2].astype(int) - bbox[0].astype(int), bbox[3].astype(int) - bbox[1].astype(int) ]) scores.append(bbox[4]) names.append(CLASSES[int(bbox[5])]) boxes = np.array(boxes) names = np.array(names) scores = np.array(scores) features = np.array(encoder(frame, boxes)) detections = [ Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip( boxes, scores, names, features) ] tracker.predict() tracker.update(detections) tracked_bboxes = [] for track in tracker.tracks: if not track.is_confirmed( ) or track.time_since_update > 1: # 1 / 5 continue bbox = track.to_tlbr() class_name = track.get_class() tracking_id = track.track_id index = key_list[val_list.index(class_name)] tracked_bboxes.append(bbox.tolist() + [tracking_id, index]) image = utils.draw_bbox(frame, tracked_bboxes, classes=CLASSES, tracking=True) image = cv2.putText( image, "Time: {:.2f}ms".format(sum(times) / len(times) * 1000), (0, 36), # 24 cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 0, 255), 2) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) cv2.namedWindow("Detections", cv2.WINDOW_AUTOSIZE) cv2.imshow("Detections", image) if FLAGS.output: out.write(image) if cv2.waitKey(1) & 0xFF == ord('q'): break vid.release() if FLAGS.output: out.release() cv2.destroyAllWindows()
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) input_size = FLAGS.size image_path = FLAGS.image original_image = cv2.imread(image_path) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv4(input_layer) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: feature_maps = YOLOv4(input_layer) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() pred_bbox = model.predict(image_data) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] for i, pred in enumerate(pred_bbox): conv_shape = pred.shape output_size = conv_shape[1] conv_raw_dxdy = pred[:, :, :, :, 0:2] conv_raw_dwdh = pred[:, :, :, :, 2:4] xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size)) xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2) # [gx, gy, 1, 2] xy_grid = np.tile(tf.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1]) xy_grid = xy_grid.astype(np.float) pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * STRIDES[i] # pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) * STRIDES[i] pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) pred[:, :, :, :, 0:4] = tf.concat([pred_xy, pred_wh], axis=-1) pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox] pred_bbox = tf.concat(pred_bbox, axis=0) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.3) bboxes = utils.nms(bboxes, 0.45, method='nms') image = utils.draw_bbox(original_image, bboxes) image = Image.fromarray(image) image.show()
def main(_argv): physical_devices = tf.config.experimental.list_physical_devices('GPU') for physical_device in physical_devices: tf.config.experimental.set_memory_growth(physical_device, True) if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) XYSCALE = cfg.YOLO.XYSCALE_TINY if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY_V3, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) XYSCALE = cfg.YOLO.XYSCALE if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) CLASSES = utils.read_class_names(cfg.YOLO.CLASSES) NUM_CLASSES = len(CLASSES) input_size = FLAGS.size try: vid = cv2.VideoCapture(int(FLAGS.video)) except: vid = cv2.VideoCapture(FLAGS.video) times = [] if FLAGS.output: width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height)) # TODO: switch to get vertical if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: if FLAGS.model == 'yolov3': feature_maps = YOLOv3_tiny(input_layer, NUM_CLASSES) else: feature_maps = YOLOv4_tiny(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() model.summary() elif FLAGS.framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() elif FLAGS.framework == 'trt': saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] logging.info("Model loaded!") while True: return_value, frame = vid.read() # frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE) # TODO: here if not return_value: logging.warning("Empty Frame") break frame_size = frame.shape[:2] frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) elif FLAGS.framework == 'tflite': interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] elif FLAGS.framework == 'trt': batched_input = tf.constant(image_data) pred_bbox = [] result = infer(batched_input) for _, value in result.items(): value = value.numpy() pred_bbox.append(value) curr_time = time.time() times.append(curr_time - prev_time) times = times[-20:] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.5) # 0.25 bboxes = utils.nms(bboxes, 0.213, method='nms') # 0.213 image = utils.draw_bbox(frame, bboxes, classes=CLASSES) image = cv2.putText( image, "Time: {:.2f}ms".format(sum(times) / len(times) * 1000), (0, 24), # 24 cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) # 0.7 image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.namedWindow("Detections", cv2.WINDOW_AUTOSIZE) cv2.imshow("Detections", image) if FLAGS.output: out.write(image) if cv2.waitKey(1) & 0xFF == ord('q'): break vid.release() if FLAGS.output: out.release() cv2.destroyAllWindows()
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE config = ConfigProto() config.gpu_options.allow_growth = True session = InteractiveSession(config=config) input_size = FLAGS.size physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) elif FLAGS.framework == 'trt': saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) signature_keys = list(saved_model_loaded.signatures.keys()) print(signature_keys) infer = saved_model_loaded.signatures['serving_default'] logging.info('weights loaded') @tf.function def run_model(x): return model(x) # Test the TensorFlow Lite model on random input data. sum = 0 original_image = cv2.imread(FLAGS.image) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preprocess(np.copy(original_image), [FLAGS.size, FLAGS.size]) image_data = image_data[np.newaxis, ...].astype(np.float32) img_raw = tf.image.decode_image(open(FLAGS.image, 'rb').read(), channels=3) img_raw = tf.expand_dims(img_raw, 0) img_raw = tf.image.resize(img_raw, (FLAGS.size, FLAGS.size)) batched_input = tf.constant(image_data) for i in range(1000): prev_time = time.time() # pred_bbox = model.predict(image_data) if FLAGS.framework == 'tf': pred_bbox = [] result = run_model(image_data) for value in result: value = value.numpy() pred_bbox.append(value) if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') elif FLAGS.framework == 'trt': pred_bbox = [] result = infer(batched_input) for key, value in result.items(): value = value.numpy() pred_bbox.append(value) if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') # pred_bbox = pred_bbox.numpy() curr_time = time.time() exec_time = curr_time - prev_time if i == 0: continue sum += (1 / exec_time) info = str(i) + " time:" + str(round( exec_time, 3)) + " average FPS:" + str(round( sum / i, 2)) + ", FPS: " + str(round((1 / exec_time), 1)) print(info)
def main(_argv): physical_devices = tf.config.experimental.list_physical_devices('GPU') for physical_device in physical_devices: tf.config.experimental.set_memory_growth(physical_device, True) if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) XYSCALE = cfg.YOLO.XYSCALE_TINY if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY_V3, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) XYSCALE = cfg.YOLO.XYSCALE if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) CLASSES = utils.read_class_names(cfg.YOLO.CLASSES) NUM_CLASSES = len(CLASSES) input_size = FLAGS.size image_path = FLAGS.image original_image = cv2.imread(image_path) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preprocess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: if FLAGS.model == 'yolov3': feature_maps = YOLOv3_tiny(input_layer, NUM_CLASSES) else: feature_maps = YOLOv4_tiny(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASSES) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASSES, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() model.summary() pred_bbox = model.predict(image_data) elif FLAGS.framework == 'tflite': interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] elif FLAGS.framework == 'trt': saved_model_loaded = tf.saved_model.load(FLAGS.weights, tags=[tag_constants.SERVING]) infer = saved_model_loaded.signatures['serving_default'] batched_input = tf.constant(image_data) pred_bbox = [] result = infer(batched_input) for _, value in result.items(): value = value.numpy() pred_bbox.append(value) if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.5) # 0.25 bboxes = utils.nms(bboxes, 0.5, method='nms') # 0.213 image = utils.draw_bbox(original_image, bboxes, classes=CLASSES) image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB) cv2.imwrite(FLAGS.output, image)
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size video_path = FLAGS.video print("Video from: ", video_path) vid = cv2.VideoCapture(video_path) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() model.summary() else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) while True: return_value, frame = vid.read() if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: cv2.destroyWindow("result") raise ValueError("No image! Try with another video format") while cv2.getWindowProperty('window-name', 0) >= 0: keyCode = cv2.waitKey(50) #break frame_size = frame.shape[:2] image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') image = utils.draw_bbox(frame, bboxes) curr_time = time.time() exec_time = curr_time - prev_time result = np.asarray(image) info = "time: %.2f ms" % (1000 * exec_time) print(info) cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imshow("result", result) if cv2.waitKey(1) & 0xFF == ord('q'): break
def main(_argv): import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) while True: frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() # Align the depth frame to color frame aligned_frames = align.process(frames) # Get aligned frames depth_frame = aligned_frames.get_depth_frame() color_frame = aligned_frames.get_color_frame() if not depth_frame or not color_frame: continue depth_intrin = depth_frame.profile.as_video_stream_profile().intrinsics color_intrin = color_frame.profile.as_video_stream_profile().intrinsics depth_to_color_extrin = depth_frame.profile.get_extrinsics_to( color_frame.profile) depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) frame = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) frame_size = frame.shape[:2] image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() scaled_depth = cv2.convertScaleAbs(depth_image, alpha=0.08) depth_colormap = cv2.applyColorMap(scaled_depth, cv2.COLORMAP_JET) if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') view2d = np.zeros((480, 640, 3), np.uint8) for box in bboxes: x_mid = int((box[0] + box[2]) / 2) y_mid = int((box[1] + box[3]) / 2) pixel_depths = [] for i in range(3): for j in range(3): pixel_depths.append( depth_frame.get_distance(int(x_mid + i - 1), int(y_mid + j - 1))) object_depth = statistics.median(pixel_depths) object_point = rs.rs2_deproject_pixel_to_point( depth_intrin, [x_mid, y_mid], object_depth) if box[5] == 67.0: print('found phone') if object_depth == 0.0: print('depth not found') depth_colormap[max(0, min(y_mid, 479)), max(0, min(x_mid, 639))] = [0, 255, 0] view2d[max(0, min(480 - int(object_point[2] * 350), 479)), max(0, min(int(object_point[0] * 350) + 320, 639))] = [0, 255, 0] #print('x_min', box[0]) #print('y_min', box[1]) #print('x_max', box[2]) #print('y_max', box[3]) #print('probability', box[4]) #print('object_id', box[5]) #print('point', object_point) #print('-----') #curr_time = time.time() #exec_time = curr_time - prev_time #info = "time: %.2f ms" %(1000*exec_time) #print(info) cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) image_color = utils.draw_bbox(frame, bboxes) result = cv2.cvtColor(image_color, cv2.COLOR_RGB2BGR) image_depth = utils.draw_bbox(depth_colormap, bboxes) images = np.hstack((view2d, image_depth)) cv2.imshow("result", images) print('-----') if cv2.waitKey(1) & 0xFF == ord('q'): pipeline.stop() break
def __init__(self, framework='tf', size=608, tiny=False, model='yolov4'): self.framework = framework self.weights = 'weights' #None#weights self.size = size self.tiny = tiny self.model = model self.instanciated_model = None # Instanciate model print('Tiny ', self.tiny) #image_path = self.image NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) input_size = self.size if self.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if self.tiny: if self.model == 'yolov3': feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) else: feature_maps = YOLOv4_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) model.summary() utils.load_weights_tiny(model, self.weights, self.model) else: if self.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, self.weights) elif self.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) # Check if files have already been downloaded yolov4_weights_path = os.path.join(self.weights, 'yolov4.weights') #yolov4_weights_path = os.path.join(Path(os.path.realpath(__file__)).parent,'data/yolov4.weights') if not os.path.exists(yolov4_weights_path): print('Downloading weights file') self.weights = self.download('yolov4.weights', local_path=self.weights) print('Weight file was downloaded to', self.weights) else: print('Weights file already downloaded') self.weights = yolov4_weights_path if self.weights.split(".")[len(self.weights.split(".")) - 1] == "weights": utils.load_weights(model, self.weights) else: model.load_weights(self.weights).expect_partial() self.instanciated_model = model else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=self.weights) interpreter.allocate_tensors() self.instanciated_model = interpreter
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size video_path = FLAGS.video print("Video from: ", video_path) vid = cv2.VideoCapture(video_path) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = int(vid.get(cv2.CAP_PROP_FPS)) fourcc = cv2.VideoWriter_fourcc(*'XVID') output_movie = cv2.VideoWriter('output' + str(round(time.time())) + '.avi', fourcc, fps, (width, height)) # initialize our centroid tracker ct = CentroidTracker() if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() model.summary() else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) while True: return_value, frame = vid.read() if not return_value: #verify if the last frame was empty print("end of the video file...") break if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: raise ValueError("No image! Try with another video format") frame_size = frame.shape[:2] image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.40) #bboxes = utils.nms(bboxes, 0.213, method='nms') #coord list of all boxes detected in this frame rects = bboxes[:, 0:4] # box rectangles objects = ct.update(rects) # loop over the tracked objects for (objectID, centroid) in objects.items(): # draw both the ID of the object and the centroid of the # object on the output frame text = "ID {}".format(objectID) cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.circle(frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1) # image = utils.draw_bbox(frame, bboxes) # curr_time = time.time() # exec_time = curr_time - prev_time # result = np.asarray(image) # info = "time: %.2f ms" %(1000*exec_time) # print(info) # # cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) # result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # # cv2.imshow("result", result) output_movie.write(frame) print("writing frame") if cv2.waitKey(1) & 0xFF == ord('q'): break vid.release() output_movie.release() cv2.destroyAllWindows()
def main(_argv): #Yolo-tiny버전이 아닌지 if문을 통해 구분한다. if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) #tiny버전이 아닐 경우 Yolo-v4모델을 가져오고 anchor박스의 정보도 함께 가져온다. if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) #클래스개수, 박스의 XYSCALE을 Yolo-v4의 cfg파일에서 불러오고 input_size와 image_path를 미리 정의한 flags객체의 size와 image값으로 정의한다. NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size image_path = FLAGS.image #cv2모듈을 통해 이미지를 불러오고 불러온 이미지를 BGR이미지를 RGB로 바꿔준다. #이는 컬러 사진을 opencv에서는 BGR순서로 저장하는데 matplotlib에서는 RGB로 저장하기 때문이다. original_image = cv2.imread(image_path) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] #이미지 데이터들을 배열로 바꿔주고 데이터타입을 float32로 변환해준다. image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) #framework가 tf로 정의된 경우 FLAGS.model이 어떻게 정의되었는지에 따라 불러오는 모델이 다르다. #지금의 경우는 Yolo-v4를 다루고 있으므로 FLAGS.model이 yolov4로 정의된 경우만 보겠다. if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) #YOLOv4에 input 레이어와 클래스를 넣어주어 feature map을 생성하고 바운딩 박스를 예측하기 위한 리스트를 선언해준다. #이후 반복문을 통해 예측된 바운딩박스의 좌표를 리스트에 넣어준 뒤 이것을 model에 input레이어와 함께 넣어 model을 생성해준다. #그 다음 미리 학습된 weights값들을 load해온다. elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() #이후 원래 이미지 데이터에서 예측된 바운딩 박스를 표시해준다. pred_bbox = model.predict(image_data) else:. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))] #이후 표시된 바운딩 박스 중 유효한 바운딩 박스들만 남기는 작업을 한 후 최종적으로 pred_bbox에 저장한다. if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') #cv2모듈을 사용하여 예측한 바운딩박스가 표시된 이미지를 출력한다. image = utils.draw_bbox(original_image, bboxes) image = Image.fromarray(image) image.show()
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size video_path = FLAGS.video print("Video from: ", video_path) vid = cv2.VideoCapture(video_path) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() # model.summary() else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) # setup for output video width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH) + 0.5) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT) + 0.5) size = (width, height) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('/content/output-vid.avi', fourcc, 20.0, size) total_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) print('Total Frames:', total_frames) while True: return_value, frame = vid.read() n_frame = int(vid.get(cv2.CAP_PROP_POS_FRAMES)) if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: out.release() if (total_frames - 1 != n_frame): raise ValueError("No image! Try with another video format") print("Finished processing video.") break frame_size = frame.shape[:2] image_data = utils.image_preporcess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') image = utils.draw_bbox(frame, bboxes) curr_time = time.time() exec_time = curr_time - prev_time result = np.asarray(image) info = "time: %.2f ms" % (1000 * exec_time) print(info) # write modified frame to video resultFrame = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) out.write(resultFrame) # save modified frames print("Frame:", n_frame) cv2.imwrite("frame{}.jpg".format(n_frame), resultFrame) if cv2.waitKey(1) & 0xFF == ord('q'): break
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size video_path = FLAGS.video print("Video from: ", video_path ) vid = cv2.VideoCapture(video_path) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) fps = int(vid.get(cv2.CAP_PROP_FPS)) fourcc = cv2.VideoWriter_fourcc(*'XVID') output_movie = cv2.VideoWriter('output' + str(round(time.time()))+ '.avi', fourcc, fps, (width, height)) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() model.summary() else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) total_passed_vehicle = 0 speed = "waiting..." direction = "waiting..." size = "waiting..." color = "waiting..." counting_mode = "..." width_heigh_taken = True while True: return_value, frame = vid.read() if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: raise ValueError("No image! Try with another video format") frame_size = frame.shape[:2] image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.25) boxes = bboxes[:, 0:4] scores = bboxes[:, 4] classes = bboxes[:, 5] #bboxes = utils.nms(bboxes, 0.213, method='nms') roi = 450 category_index = utils.read_class_names(cfg.YOLO.CLASSES) counter, csv_line, counting_mode = vis_util.visualize_boxes_and_labels_on_image_array_y_axis(vid.get(1), frame, 1, False, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, y_reference = roi, use_normalized_coordinates=True, line_thickness=4) if counter == 1: cv2.line(frame, (roi, 0), (roi, height), (0, 0xFF, 0), 5) else: cv2.line(frame, (roi, 0), (roi, height), (0, 0, 0xFF), 5) total_passed_vehicle = total_passed_vehicle + counter # insert information text to video frame font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText( input_frame, 'Veiculos Detectados: ' + str(total_passed_vehicle), (10, 35), font, 0.8, (0, 0xFF, 0xFF), 2, cv2.FONT_HERSHEY_SIMPLEX, ) cv2.putText( input_frame, 'Linha de ROI', (545, roi-10), font, 0.6, (0, 0, 0xFF), 2, cv2.LINE_AA, ) # image = utils.draw_bbox(frame, bboxes) # curr_time = time.time() # exec_time = curr_time - prev_time # result = np.asarray(image) # info = "time: %.2f ms" %(1000*exec_time) # print(info) # cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) # result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # cv2.imshow("result", result) # if cv2.waitKey(1) & 0xFF == ord('q'): break output_movie.write(frame) print ("writing frame") if cv2.waitKey(1) & 0xFF == ord('q'): break vid.release() output_movie.release() cv2.destroyAllWindows()
else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor)
def main(_argv): INPUT_SIZE = FLAGS.size if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) CLASSES = utils.read_class_names(cfg.YOLO.CLASSES) predicted_dir_path = './mAP/predicted' ground_truth_dir_path = './mAP/ground-truth' if os.path.exists(predicted_dir_path): shutil.rmtree(predicted_dir_path) if os.path.exists(ground_truth_dir_path): shutil.rmtree(ground_truth_dir_path) if os.path.exists(cfg.TEST.DECTECTED_IMAGE_PATH): shutil.rmtree(cfg.TEST.DECTECTED_IMAGE_PATH) os.mkdir(predicted_dir_path) os.mkdir(ground_truth_dir_path) os.mkdir(cfg.TEST.DECTECTED_IMAGE_PATH) # Build Model if FLAGS.framework == "tf": input_layer = tf.keras.layers.Input([INPUT_SIZE, INPUT_SIZE, 3]) if FLAGS.tiny: feature_maps = YOLOv4(input_layer) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: feature_maps = YOLOv4(input_layer) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) num_lines = sum(1 for line in open(FLAGS.annotation_path)) with open(cfg.TEST.ANNOT_PATH, 'r') as annotation_file: for num, line in enumerate(annotation_file): annotation = line.strip().split() image_path = annotation[0] image_name = image_path.split('/')[-1] image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) bbox_data_gt = np.array( [list(map(int, box.split(','))) for box in annotation[1:]]) if len(bbox_data_gt) == 0: bboxes_gt = [] classes_gt = [] else: bboxes_gt, classes_gt = bbox_data_gt[:, :4], bbox_data_gt[:, 4] ground_truth_path = os.path.join(ground_truth_dir_path, str(num) + '.txt') print('=> ground truth of %s:' % image_name) num_bbox_gt = len(bboxes_gt) with open(ground_truth_path, 'w') as f: for i in range(num_bbox_gt): class_name = CLASSES[classes_gt[i]] xmin, ymin, xmax, ymax = list(map(str, bboxes_gt[i])) bbox_mess = ' '.join([class_name, xmin, ymin, xmax, ymax ]) + '\n' f.write(bbox_mess) print('\t' + str(bbox_mess).strip()) print('=> predict result of %s:' % image_name) predict_result_path = os.path.join(predicted_dir_path, str(num) + '.txt') # Predict Process image_size = image.shape[:2] image_data = utils.image_preporcess(np.copy(image), [INPUT_SIZE, INPUT_SIZE]) image_data = image_data[np.newaxis, ...].astype(np.float32) if FLAGS.framework == "tf": pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] for i, pred in enumerate(pred_bbox): conv_shape = pred.shape output_size = conv_shape[1] conv_raw_dxdy = pred[:, :, :, :, 0:2] conv_raw_dwdh = pred[:, :, :, :, 2:4] xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size)) xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2) # [gx, gy, 1, 2] xy_grid = np.tile(tf.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1]) xy_grid = xy_grid.astype(np.float) pred_xy = (tf.sigmoid(conv_raw_dxdy) + xy_grid) * STRIDES[i] # pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) * STRIDES[i] pred_wh = (tf.exp(conv_raw_dwdh) * ANCHORS[i]) pred[:, :, :, :, 0:4] = tf.concat([pred_xy, pred_wh], axis=-1) pred_bbox = [ tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox ] pred_bbox = tf.concat(pred_bbox, axis=0) bboxes = utils.postprocess_boxes(pred_bbox, image_size, INPUT_SIZE, cfg.TEST.SCORE_THRESHOLD) bboxes = utils.nms(bboxes, cfg.TEST.IOU_THRESHOLD, method='nms') if cfg.TEST.DECTECTED_IMAGE_PATH is not None: image = utils.draw_bbox(image, bboxes) cv2.imwrite(cfg.TEST.DECTECTED_IMAGE_PATH + image_name, image) with open(predict_result_path, 'w') as f: for bbox in bboxes: coor = np.array(bbox[:4], dtype=np.int32) score = bbox[4] class_ind = int(bbox[5]) class_name = CLASSES[class_ind] score = '%.4f' % score xmin, ymin, xmax, ymax = list(map(str, coor)) bbox_mess = ' '.join( [class_name, score, xmin, ymin, xmax, ymax]) + '\n' f.write(bbox_mess) print('\t' + str(bbox_mess).strip()) print(num, num_lines)
def main(_argv): print('Arguments', _argv) print('Flags', flags) FLAGS.tiny = False print('Tiny ', FLAGS.tiny) if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) XYSCALE = cfg.YOLO.XYSCALE_TINY else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) XYSCALE = cfg.YOLO.XYSCALE NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) input_size = FLAGS.size image_path = FLAGS.image original_image = cv2.imread(image_path) print('image:', original_image) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preprocess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: if FLAGS.model == 'yolov3': feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) else: feature_maps = YOLOv4_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) model.summary() utils.load_weights_tiny(model, FLAGS.weights, FLAGS.model) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) if FLAGS.weights.split(".")[len(FLAGS.weights.split(".")) - 1] == "weights": utils.load_weights(model, FLAGS.weights) else: model.load_weights(FLAGS.weights).expect_partial() model.summary() pred_bbox = model.predict(image_data) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov4': if FLAGS.tiny: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE, RESIZE=1.5) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') image = utils.draw_bbox(original_image, bboxes) image = Image.fromarray(image) #image.show() print('Image path', image_path) print('Type Image path', type(image_path)) print('Bboxes type', type(bboxes)) classes = utils.read_class_names(cfg.YOLO.CLASSES) list_bboxes = [] for i, bbox in enumerate(bboxes): coor = np.array(bbox[:4], dtype=np.int32) score = bbox[4] class_ind = int(bbox[5]) #print('type bbox',type(bbox)) #print('bbox',bbox[:4]) #print('coor',list(coor)) bbox_info = { 'coor': list(coor), 'probability': score, 'class': classes[class_ind] } list_bboxes.append(bbox_info) try: output_name = os.path.join('results/out_' + os.path.basename(image_path)) image.save(output_name) #cv2.imwrite(output_name,img) print('Img saved to', output_name) output = pd.DataFrame(list_bboxes) print('image_path', image_path) output_name = '.'.join(output_name.split('.')[:2]) + '.xlsx' #output_name = 'results/out_'+image_path.split('\\')[-1].split('.')[0]+'.xlsx' print('output_name', output_name) output.to_excel(output_name) except Exception as e: print(e)
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size image_path = FLAGS.image if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) sock_receiver = SocketNumpyArray() sock_receiver.initalize_receiver(9995) while True: start_time = time.time() print('Waiting frame') frame = sock_receiver.receive_array() print('Took frame') frame = process(frame, input_size, model, FLAGS, ANCHORS, STRIDES, XYSCALE) print("FPS: ", 1.0 / (time.time() - start_time)) # Display cv2.imshow('frame', frame) cv2.waitKey(1)
def save_tflite(): input_layer = tf.keras.layers.Input( [FLAGS.input_size, FLAGS.input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv4(input_layer) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) model.summary() utils.load_weights_tiny(model, FLAGS.weights) else: feature_maps = YOLOv4(input_layer) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) model.summary() utils.load_weights(model, FLAGS.weights) converter = tf.lite.TFLiteConverter.from_keras_model(model) if FLAGS.quantize_mode == 'int8': converter.optimizations = [tf.lite.Optimize.DEFAULT] # converter.default_ranges_stats = (0, 6) # converter.inference_type = tf.compat.v1.lite.constants.QUANTIZED_UINT8 # converter.output_format = tf.compat.v1.lite.constants.TFLITE # converter.allow_custom_ops = True # converter.quantized_input_stats = {"input0": (0., 1.)} # converter.optimizations = [tf.lite.Optimize.DEFAULT] # converter.inference_input_type = tf.compat.v1.lite.constants.QUANTIZED_UINT8 # converter.inference_output_type = tf.compat.v1.lite.constants.QUANTIZED_UINT8 # converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] # converter.inference_input_type = tf.uint8 # converter.inference_output_type = tf.uint8 elif FLAGS.quantize_mode == 'float16': converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [ tf.compat.v1.lite.constants.FLOAT16 ] elif FLAGS.quantize_mode == 'full_int8': converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS_INT8 ] converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS ] converter.allow_custom_ops = True converter.representative_dataset = representative_data_gen tflite_model = converter.convert() open(FLAGS.output, 'wb').write(tflite_model) # tflite_model = converter.convert() # tf.GFile(FLAGS.output, "wb").write(tflite_model) logging.info("model saved to: {}".format(FLAGS.output))
def main(_argv): import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size video_path = FLAGS.video if video_path == 'none': possible_camera_index = [5, 6, 7, 8] print("Searching for camera...") for camera_index in possible_camera_index: vid = cv2.VideoCapture(camera_index) return_value, frame = vid.read() if frame is not None: print("Camera found at index", camera_index) break else: print("Video from: ", video_path) vid = cv2.VideoCapture(video_path) if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) while True: return_value, frame = vid.read() if return_value: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) else: raise ValueError("No image! Try with another video format") frame_size = frame.shape[:2] image_data = utils.image_preprocess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) prev_time = time.time() if FLAGS.framework == 'tf': pred_bbox = model.predict(image_data) else: interpreter.set_tensor(input_details[0]['index'], image_data) interpreter.invoke() pred_bbox = [ interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details)) ] if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') for box in bboxes: print('x_min', box[0]) print('y_min', box[1]) print('x_max', box[2]) print('y_max', box[3]) print('probability', box[4]) print('object_id', box[5]) print('-----') image = utils.draw_bbox(frame, bboxes) curr_time = time.time() exec_time = curr_time - prev_time result = np.asarray(image) info = "time: %.2f ms" % (1000 * exec_time) print(info) cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE) result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imshow("result", result) print(cv2.getWindowImageRect('result')) if cv2.waitKey(1) & 0xFF == ord('q'): vid.release() break
def main(_argv): #TODO: add valid extensions directory = os.path.join(FLAGS.image_dir, "*") image_list = glob.glob(directory) if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) model.summary() fieldnames = ["filename", "cars", "trucks", "buses"] with open(os.path.join(orig_dir, "result.csv"), 'w+', newline='') as f: # Attach a CSV writer to the file with the desired fieldnames writer = csv.DictWriter(f, fieldnames, delimiter=";") writer.writeheader() for image_path in image_list: if "_out" in image_path: continue d = {} original_image = cv2.imread(image_path) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) pred_bbox = model.predict(image_data) if FLAGS.model == 'yolov4': pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE) else: pred_bbox = utils.postprocess_bbbox(pred_bbox, ANCHORS, STRIDES) bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = utils.nms(bboxes, 0.213, method='nms') bboxes_filtered = bboxes.copy() l = len(bboxes) for i, bbox in enumerate(bboxes_filtered): bboxes_filtered = np.delete(bboxes_filtered, l - 1 - i, 0) cars = 0 trucks = 0 buses = 0 for i, bbox in enumerate(bboxes): class_ind = int(bbox[5]) if class_ind == 2 or class_ind == 5 or class_ind == 7: bboxes_filtered = np.insert(bboxes_filtered, 0, bbox, axis=0) if class_ind == 2: cars += 1 if class_ind == 5: buses += 1 if class_ind == 7: trucks += 1 d["filename"] = image_path d["cars"] = cars d["trucks"] = trucks d["buses"] = buses writer.writerow(d) image = utils.draw_bbox(original_image, bboxes_filtered) image = Image.fromarray(image) # image.show() image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB) cv2.imwrite(image_path.replace(".jpg", "_out.jpg"), image)
def main(_argv): if FLAGS.tiny: STRIDES = np.array(cfg.YOLO.STRIDES_TINY) ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_TINY, FLAGS.tiny) else: STRIDES = np.array(cfg.YOLO.STRIDES) if FLAGS.model == 'yolov4': ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS, FLAGS.tiny) else: ANCHORS = utils.get_anchors(cfg.YOLO.ANCHORS_V3, FLAGS.tiny) NUM_CLASS = len(utils.read_class_names(cfg.YOLO.CLASSES)) XYSCALE = cfg.YOLO.XYSCALE input_size = FLAGS.size image_path = FLAGS.image if FLAGS.framework == 'tf': input_layer = tf.keras.layers.Input([input_size, input_size, 3]) if FLAGS.tiny: feature_maps = YOLOv3_tiny(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_tiny(model, FLAGS.weights) else: if FLAGS.model == 'yolov3': feature_maps = YOLOv3(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights_v3(model, FLAGS.weights) elif FLAGS.model == 'yolov4': feature_maps = YOLOv4(input_layer, NUM_CLASS) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, NUM_CLASS, i) bbox_tensors.append(bbox_tensor) model = tf.keras.Model(input_layer, bbox_tensors) utils.load_weights(model, FLAGS.weights) else: # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=FLAGS.weights) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() print(input_details) print(output_details) host = '' # Symbolic name meaning all available interfaces port = 45678 # Arbitrary non-privileged port s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((host, port)) s.listen(1) print('Initializing connection') conn, addr = s.accept() print('Connected by', addr) data = (conn.recv(1024)) data = json.loads(data.decode()) # conn.sendall(json.dumps(data).encode()) #print('Recived iniatializing data') shape = data.get("shape") shared_memory_name = data.get("name") type_data = data.get("type") object_to_find = data.get("object") # Attach to the existing shared memory block existing_shm = shared_memory.SharedMemory(name=shared_memory_name) # Note that a.shape is (6,) and a.dtype is np.int64 in this example previous = None frame = None # print('objeto a encontrar ' + object_to_find) print('Esperando imágenes') coords = np.empty(4, dtype=np.int32) while (True): start_time = time.time() # print('Waiting frame') data = (conn.recv(1024)) if data == bytes('1', 'utf8'): previous = frame frame = np.ndarray(shape, dtype=type_data, buffer=existing_shm.buf) frame, object_found, coords = process(frame, input_size, model, object_to_find, FLAGS, ANCHORS, STRIDES, XYSCALE) cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break if (object_found): data = json.dumps({ "was_found": object_found, "coords": coords }) else: data = json.dumps({"was_found": object_found}) conn.sendall(data.encode()) #print("FPS: ", 1.0 / (time.time() - start_time)) existing_shm.close()