Example #1
0
def mask_ts_coors(nifti_file, mask, outnii_filename=None, mask_thresh=0,scrub_trs_file=None):
    """
    Calculates correlations between a mask's mean timeseries and all other voxels
    """
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if scrub_trs_file:
        scrub_trs = np.array(core.file_reader(scrub_trs_file)) # array of TRs to exclude
        keep_trs = np.nonzero(scrub_trs==0)[0] # array of TRs to include
        input_d = input_d[:, :, :, keep_trs]
    nonzero_coords = core.get_nonzero_coords(nifti_file,mask_thresh)
    mask_coords = core.get_nonzero_coords(mask,mask_thresh)
    mask_array = [input_d[mask_coord[0], mask_coord[1], mask_coord[2], :] for mask_coord in mask_coords]
    mask_mean_ts = np.mean(mask_array,axis=0)
    del mask_array
    ts_array = np.array([input_d[nz_coord[0],nz_coord[1],nz_coord[2], :] for nz_coord in nonzero_coords])
    del input_d
    indiv_corr = [np.corrcoef([mask_mean_ts,ts])[1][0] for ts in ts_array]
    coord_corrs = zip(nonzero_coords,indiv_corr)
    xsize, ysize, zsize = input.shape[0:3]
    mask_corrs_image = np.zeros((xsize, ysize, zsize))
    for out_coord, out_corr in coord_corrs:
        mask_corrs_image[out_coord[0],out_coord[1],out_coord[2]] = out_corr
    if not outnii_filename:
        return mask_corrs_image
    else:
        outnifti = nib.Nifti1Image(mask_corrs_image, input.get_header().get_best_affine())
        outnifti.to_filename(outnii_filename)
Example #2
0
def mask_mutualinfo_matrix(nifti_file,masks,outfile,mask_thresh=0,nbins=10):
    """
    Calculates mutual information matrix for a set of mask mean timeseries'
    """
    from pyentropy import DiscreteSystem
    mutualinfo_mat = np.zeros((len(masks),len(masks)))
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if len(input.shape) > 3:
        ts_length = input.shape[3]
    else:
        ts_length = 1
    mean_bin_ts_array = np.zeros((len(masks),ts_length),dtype='int')
    for count,mask in enumerate(masks):
        mask_coords = core.get_nonzero_coords(mask,mask_thresh)
        mask_array = [input_d[mask_coord[0], mask_coord[1], mask_coord[2], :] for mask_coord in mask_coords]
        mean_ts = np.mean(mask_array,axis=0)
        l = np.linspace(min(mean_ts),max(mean_ts),nbins)
        mean_bin_ts_array[count,:] = np.digitize(mean_ts,l)-1 # set range to start at 0
        if count > 0:
            for prev in range(count):
                sys = DiscreteSystem(mean_bin_ts_array[count],(1,nbins),mean_bin_ts_array[prev],(1,nbins))
                sys.calculate_entropies(method='qe',calc=['HX','HXY','HiXY','HshXY'])
                mutualinfo_mat[count,prev] = sys.I()
    mutualinfo_mat_sym = core.symmetrize_mat(mutualinfo_mat,'bottom')
    np.savetxt('%s.txt'%outfile,mutualinfo_mat_sym)
    return mutualinfo_mat_sym
Example #3
0
def vox_ts_corrs(nifti_file,coord=None,covariate_file=None,outnii_filename=False,mask_thresh=0,scrub_trs_file=None):
    """
    Take either: 1) an (x,y,z) coordinate or 2) an external covariate file (column) and calculate the correlation of that coordinate's timeseries
    with all other timeseries'
    """
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if scrub_trs_file:
        scrub_trs = np.array(core.file_reader(scrub_trs_file)) # array of TRs to exclude
        keep_trs = np.nonzero(scrub_trs==0)[0] # array of TRs to include
        input_d = input_d[:, :, :, keep_trs]
    nonzero_coords = core.get_nonzero_coords(nifti_file,mask_thresh)
    ts_array = np.array([input_d[nz_coord[0],nz_coord[1],nz_coord[2], :] for nz_coord in nonzero_coords])
    if coord:
        nonzero_index = nonzero_coords.index(coord)
        seed_ts = ts_array[nonzero_index]
    else:
        seed_ts = core.file_reader(covariate_file)
        seed_ts = [item for sublist in seed_ts for item in sublist] # flatten list
    indiv_corr = [np.corrcoef([seed_ts,ts])[1][0] for ts in ts_array]
    coord_corrs = zip(nonzero_coords,indiv_corr)
    vox_corrs_image = np.zeros((input.shape[0:3]))
    
    for out_coord,out_corr in coord_corrs:
        vox_corrs_image[out_coord[0],out_coord[1],out_coord[2]]=out_corr
    if not outnii_filename:
        return vox_corrs_image
    else:
        outnifti = nib.Nifti1Image(vox_corrs_image, input.get_header().get_best_affine())
        outnifti.to_filename(outnii_filename)
Example #4
0
def mask_connectivity_matrix(tracks,header,masks,outfile,nonzero_thresh=0,through=0,tracks_mm=0,length_thresh=0):
    """
    Calculate the (symmetric) connectivity matrix for a set of tracks (from diffusion toolkit .trk file) and a
    set of masks
    """
    # Leave third argument as 0 to count number of tracks that originate/terminate at
    # either end of a pair of masks, set through to 1 to count number of tracks that
    # intersect both of the masks.
    connect_mat=np.zeros((len(masks),len(masks)))
    masks_coords_list=[]
    tracknums=[[] for x in range(len(masks)*len(masks))]
    for mask in masks:
        masks_coords_list.append(set(core.get_nonzero_coords(mask,nonzero_thresh)))
    for tracknum,track in enumerate(tracks):
        if through == 0:
            cur_start=[]
            cur_end=[]
            track_start_set=set([track[0]])
            track_end_set=set([track[-1]])      
            for count,mask_coords_set in enumerate(masks_coords_list):
                if track_start_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur_start.append(count)
                    else:
                        cur_start.append(count)
                elif track_end_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur_end.append(count)
                    else:
                        cur_end.append(count)
            for x in cur_start:
                for y in cur_end:
                    # allow for fiber to start/end in multiple (overlapping) masks
                    connect_mat[x,y] += 1
                    tracknums[(x*len(masks))+y].append(tracknum)
        elif through == 1:
            cur=[]
            track_set=set(track)
            for count,mask_coords_set in enumerate(masks_coords_list):
                if track_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur.append(count)
                    else:
                        cur.append(count)
            for x,y in list(core.combinations(cur,2)):
                connect_mat[x,y] += 1
                tracknums[(x*len(masks))+y].append(tracknum)
    connect_mat_sym = core.symmetrize_mat_sum(connect_mat)
    tracknums_sym = core.symmetrize_tracknum_list(tracknums)
    np.savetxt('%s_connectmat.txt'%outfile,connect_mat_sym)
    return connect_mat_sym,tracknums_sym 
Example #5
0
def mask_ts_coors(nifti_file,
                  mask,
                  outnii_filename=None,
                  mask_thresh=0,
                  scrub_trs_file=None):
    """
    Calculates correlations between a mask's mean timeseries and all other voxels
    """
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if scrub_trs_file:
        scrub_trs = np.array(
            core.file_reader(scrub_trs_file))  # array of TRs to exclude
        keep_trs = np.nonzero(scrub_trs == 0)[0]  # array of TRs to include
        input_d = input_d[:, :, :, keep_trs]
    nonzero_coords = core.get_nonzero_coords(nifti_file, mask_thresh)
    mask_coords = core.get_nonzero_coords(mask, mask_thresh)
    mask_array = [
        input_d[mask_coord[0], mask_coord[1], mask_coord[2], :]
        for mask_coord in mask_coords
    ]
    mask_mean_ts = np.mean(mask_array, axis=0)
    del mask_array
    ts_array = np.array([
        input_d[nz_coord[0], nz_coord[1], nz_coord[2], :]
        for nz_coord in nonzero_coords
    ])
    del input_d
    indiv_corr = [np.corrcoef([mask_mean_ts, ts])[1][0] for ts in ts_array]
    coord_corrs = zip(nonzero_coords, indiv_corr)
    xsize, ysize, zsize = input.shape[0:3]
    mask_corrs_image = np.zeros((xsize, ysize, zsize))
    for out_coord, out_corr in coord_corrs:
        mask_corrs_image[out_coord[0], out_coord[1], out_coord[2]] = out_corr
    if not outnii_filename:
        return mask_corrs_image
    else:
        outnifti = nib.Nifti1Image(mask_corrs_image,
                                   input.get_header().get_best_affine())
        outnifti.to_filename(outnii_filename)
Example #6
0
def vox_ts_corrs(nifti_file,
                 coord=None,
                 covariate_file=None,
                 outnii_filename=False,
                 mask_thresh=0,
                 scrub_trs_file=None):
    """
    Take either: 1) an (x,y,z) coordinate or 2) an external covariate file (column) and calculate the correlation of that coordinate's timeseries
    with all other timeseries'
    """
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if scrub_trs_file:
        scrub_trs = np.array(
            core.file_reader(scrub_trs_file))  # array of TRs to exclude
        keep_trs = np.nonzero(scrub_trs == 0)[0]  # array of TRs to include
        input_d = input_d[:, :, :, keep_trs]
    nonzero_coords = core.get_nonzero_coords(nifti_file, mask_thresh)
    ts_array = np.array([
        input_d[nz_coord[0], nz_coord[1], nz_coord[2], :]
        for nz_coord in nonzero_coords
    ])
    if coord:
        nonzero_index = nonzero_coords.index(coord)
        seed_ts = ts_array[nonzero_index]
    else:
        seed_ts = core.file_reader(covariate_file)
        seed_ts = [item for sublist in seed_ts
                   for item in sublist]  # flatten list
    indiv_corr = [np.corrcoef([seed_ts, ts])[1][0] for ts in ts_array]
    coord_corrs = zip(nonzero_coords, indiv_corr)
    vox_corrs_image = np.zeros((input.shape[0:3]))

    for out_coord, out_corr in coord_corrs:
        vox_corrs_image[out_coord[0], out_coord[1], out_coord[2]] = out_corr
    if not outnii_filename:
        return vox_corrs_image
    else:
        outnifti = nib.Nifti1Image(vox_corrs_image,
                                   input.get_header().get_best_affine())
        outnifti.to_filename(outnii_filename)
Example #7
0
def mask_mutualinfo_matrix(nifti_file,
                           masks,
                           outfile,
                           mask_thresh=0,
                           nbins=10):
    """
    Calculates mutual information matrix for a set of mask mean timeseries'
    """
    from pyentropy import DiscreteSystem
    mutualinfo_mat = np.zeros((len(masks), len(masks)))
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if len(input.shape) > 3:
        ts_length = input.shape[3]
    else:
        ts_length = 1
    mean_bin_ts_array = np.zeros((len(masks), ts_length), dtype='int')
    for count, mask in enumerate(masks):
        mask_coords = core.get_nonzero_coords(mask, mask_thresh)
        mask_array = [
            input_d[mask_coord[0], mask_coord[1], mask_coord[2], :]
            for mask_coord in mask_coords
        ]
        mean_ts = np.mean(mask_array, axis=0)
        l = np.linspace(min(mean_ts), max(mean_ts), nbins)
        mean_bin_ts_array[count, :] = np.digitize(
            mean_ts, l) - 1  # set range to start at 0
        if count > 0:
            for prev in range(count):
                sys = DiscreteSystem(mean_bin_ts_array[count], (1, nbins),
                                     mean_bin_ts_array[prev], (1, nbins))
                sys.calculate_entropies(method='qe',
                                        calc=['HX', 'HXY', 'HiXY', 'HshXY'])
                mutualinfo_mat[count, prev] = sys.I()
    mutualinfo_mat_sym = core.symmetrize_mat(mutualinfo_mat, 'bottom')
    np.savetxt('%s.txt' % outfile, mutualinfo_mat_sym)
    return mutualinfo_mat_sym
Example #8
0
def mask_funcconnec_matrix(nifti_file,masks_files,outfile=None,masks_threshes = [],
                           multi_labels=[],partial=False,cov=False,zero_diag=True,
                           scrub_trs_file=None,pca=False,ts_outfile=None):
    """
    Calculates correlation/covariance matrix for a set of mask mean timeseries'
    masks_files: list of mask filenames with full path, can either be one mask
                 per file (in which case multi_labels should be []) or one file
                 with multiple numerical labels (multi_labels = [num1, num2, ...])
    masks_threshes: list of numerical values to use as lower threshold for separate
                    mask files
    output options:
    1) correlation matrix
    2) partial correlation matrix
    3) covariance matrix
    """
    if multi_labels:
        masks_coords = core.get_mask_labels(masks_files[0], labels=multi_labels)
    else:
        if masks_threshes:
            masks_coords = []
            for count, mask in enumerate(masks_files):
                masks_coords.append(core.get_nonzero_coords(mask, masks_threshes(count)))
        else:
            masks_coords = [core.get_nonzero_coords(mask) for mask in masks_files]
    connect_mat = np.zeros((len(masks_coords), len(masks_coords)))
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if scrub_trs_file:
        scrub_trs = np.array(core.file_reader(scrub_trs_file)) # array of TRs to exclude
        keep_trs = np.nonzero(scrub_trs==0)[0] # array of TRs to include
    if len(input.shape) > 3:
        if scrub_trs_file:
            ts_length = len(keep_trs)
        else:
            ts_length = input.shape[3]
    else:
        ts_length = 1
    masks_mean_ts_array = np.zeros((len(masks_coords), ts_length))
    for count, mask_coords in enumerate(masks_coords):
        if scrub_trs_file:
            mask_array = [input_d[mask_coord[0], mask_coord[1], mask_coord[2], keep_trs] for mask_coord in mask_coords]
        else:
            mask_array = [input_d[mask_coord[0], mask_coord[1], mask_coord[2], :] for mask_coord in mask_coords]
        if pca:
            [coeff,score,latent] = princomp(np.matrix(mask_array))
            masks_mean_ts_array[count, :] = score[0,:]
        else:
            masks_mean_ts_array[count, :] = np.mean(mask_array, axis=0)
    if partial:
        mat = core.partialcorr_matrix(masks_mean_ts_array)
    elif cov:
        mat = np.cov(masks_mean_ts_array)
    else:
        mat = np.corrcoef(masks_mean_ts_array)
    if zero_diag:
        mat = mat * abs(1-np.eye(mat.shape[0])) # zero matrix diagonal
    if outfile:
        np.savetxt('%s.txt'%outfile, mat)
    if ts_outfile:
        np.savetxt('%s.txt'%ts_outfile, masks_mean_ts_array)
    return mat, masks_mean_ts_array
Example #9
0
def mask_tracks(tracks,header,masks,nonzero_thresh=0,through=1,write_nii=0,outprefix="mask",tracks_mm=0,length_thresh=0):
    """
    Creates density files for all tracks passing through a set of masks
    """
    # Each volume in vox_tracks_img is the density volume for a single mask
    # Leave 'through' argument as 0 to count number of tracks that originate/terminate 
    # within a mask, set through to 1 to count number of tracks that intersect a mask
    xdim,ydim,zdim=header["dims"]
    mm_dims=np.array(header["vox_size"])*np.array(header["dims"])
    masks_coords_list=[]
    if write_nii == 1:
        vox_tracks_img=np.zeros((xdim,ydim,zdim,len(masks)))
    tracknums=[[] for x in range(len(masks))]
    for mask in masks:
        masks_coords_list.append(set(core.get_nonzero_coords(mask,nonzero_thresh)))
    for tracknum,track in enumerate(tracks):
        if through == 0:
            track_start_set=set([track[0]])
            track_end_set=set([track[-1]])
            for count,mask_coords_set in enumerate(masks_coords_list):
                if track_start_set & mask_coords_set or track_end_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            tracknums[count].append(tracknum)
                        if write_nii==1:
                            for x,y,z in track:
                                if all(np.array([x,y,z])<mm_dims):
                                    vox_tracks_img[x,y,z,count] += 1
                    else:
                        tracknums[count].append(tracknum)
                        if write_nii==1:
                            for x,y,z in track:
                                if all(np.array([x,y,z])<mm_dims):
                                    vox_tracks_img[x,y,z,count] += 1
        elif through == 1:  
            track_set=set(track)
            # track_set = track
            for count,mask_coords_set in enumerate(masks_coords_list):
                if track_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            tracknums[count].append(tracknum)
                        if write_nii==1:
                            for x,y,z in track:
                                if all(np.array([x,y,z])<mm_dims):
                                    vox_tracks_img[x,y,z,count] += 1
                    else:
                        tracknums[count].append(tracknum)
                        if write_nii==1:
                            for x,y,z in track:
                                if all(np.array([x,y,z])<mm_dims):
                                    vox_tracks_img[x,y,z,count] += 1
    mask_density = [len(hits) for hits in tracknums]
    if write_nii == 0:
        np.savetxt('%s_density.txt'%outprefix,mask_density)
        return tracknums
    else:
        outnifti = nib.Nifti1Image(vox_tracks_image, input.get_header().get_best_affine())
        outnifti.to_filename(outnii_filename)
        return tracknums
Example #10
0
def mask_connectivity_matrix_dsi(tracks,
                                 masks,
                                 outfile,
                                 nonzero_thresh=0,
                                 through=0,
                                 tracks_mm=0,
                                 length_thresh=0,
                                 header=None):
    """Calculate the (symmetric) connectivity matrix for a set of tracks from a DSI studio .txt file and a
    set of masks"""
    # Leave third argument as 0 to count number of tracks that originate/terminate at
    # either end of a pair of masks, set through to 1 to count number of tracks that
    # intersect both of the masks.
    connect_mat = np.zeros((len(masks), len(masks)))
    masks_coords_list = []
    tracknums = [[] for x in range(len(masks) * len(masks))]
    for mask in masks:
        masks_coords_list.append(
            set(core.get_nonzero_coords(mask, nonzero_thresh)))
    for tracknum, track in enumerate(tracks):
        if through == 0:
            cur_start = []
            cur_end = []
            track_start_set = set([track[0]])
            track_end_set = set([track[-1]])
            for count, mask_coords_set in enumerate(masks_coords_list):
                if track_start_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur_start.append(count)
                    else:
                        cur_start.append(count)
                elif track_end_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur_end.append(count)
                    else:
                        cur_end.append(count)
                for x in cur_start:
                    for y in cur_end:
                        # allow for fiber to start/end in multiple (overlapping) masks
                        connect_mat[x, y] += 1
                        tracknums[(x * len(masks)) + y].append(tracknum)
        elif through == 1:
            cur = []
            track_set = set(track)
            for count, mask_coords_set in enumerate(masks_coords_list):
                if track_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur.append(count)
                    else:
                        cur.append(count)
            for x, y in list(core.combinations(cur, 2)):
                connect_mat[x, y] += 1
                tracknums[(x * len(masks)) + y].append(tracknum)
    connect_mat_sym = core.symmetrize_mat_sum(connect_mat)
    tracknums_sym = core.symmetrize_tracknum_list(tracknums)
    np.savetxt('%s_connectmat.txt' % outfile, connect_mat_sym)
    return connect_mat_sym, tracknums_sym
Example #11
0
def mask_connectivity_matrix(tracks,
                             header,
                             masks,
                             outfile,
                             nonzero_thresh=0,
                             through=0,
                             tracks_mm=0,
                             length_thresh=0,
                             mask_matrix_file=None,
                             write_tracks=False,
                             write_tracks_filename=None,
                             track_file=None):
    """
    Calculate the (symmetric) connectivity matrix for a set of tracks (from diffusion toolkit .trk file) and a
    set of masks
    """
    # Leave third argument as 0 to count number of tracks that originate/terminate at
    # either end of a pair of masks, set through to 1 to count number of tracks that
    # intersect both of the masks.
    connect_mat = np.zeros((len(masks), len(masks)))
    masks_coords_list = []
    tracknums = [[] for x in range(len(masks) * len(masks))]
    for mask in masks:
        masks_coords_list.append(
            set(core.get_nonzero_coords(mask, nonzero_thresh)))
    if mask_matrix_file:
        mask_matrix = core.file_reader(mask_matrix_file)
        mask_matrix_array = np.array(mask_matrix)
    for tracknum, track in enumerate(tracks):
        if through == 0:
            cur_start = []
            cur_end = []
            track_start_set = set([track[0]])
            track_end_set = set([track[-1]])
            for count, mask_coords_set in enumerate(masks_coords_list):
                if track_start_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur_start.append(count)
                    else:
                        cur_start.append(count)
                elif track_end_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur_end.append(count)
                    else:
                        cur_end.append(count)
            for x in cur_start:
                for y in cur_end:
                    # allow for fiber to start/end in multiple (overlapping) masks
                    if mask_matrix_file:
                        if mask_matrix_array[x, y]:
                            connect_mat[x, y] += 1
                            tracknums[(x * len(masks)) + y].append(tracknum)
                    else:
                        connect_mat[x, y] += 1
                        tracknums[(x * len(masks)) + y].append(tracknum)
        elif through == 1:
            cur = []
            track_set = set(track)
            for count, mask_coords_set in enumerate(masks_coords_list):
                if track_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            cur.append(count)
                    else:
                        cur.append(count)
            for x, y in list(core.combinations(cur, 2)):
                if mask_matrix_file:
                    if mask_matrix_array[x, y]:
                        connect_mat[x, y] += 1
                        tracknums[(x * len(masks)) + y].append(tracknum)
                else:
                    connect_mat[x, y] += 1
                    tracknums[(x * len(masks)) + y].append(tracknum)
    connect_mat_sym = core.symmetrize_mat_sum(connect_mat)
    tracknums_sym = core.symmetrize_tracknum_list(tracknums)
    np.savetxt('%s_connectmat.txt' % outfile, connect_mat_sym)
    if write_tracks:
        tracknum_list = list(
            set([item for sublist in tracknums for item in sublist]))
        tracknum_list_ordered = sorted(tracknum_list)
        track_list = [tracks_mm[n] for n in tracknum_list_ordered]
        make_floats(track_list, write_tracks_filename, track_file)
    return connect_mat_sym, tracknums_sym
Example #12
0
def mask_tracks(tracks,
                header,
                masks,
                nonzero_thresh=0,
                through=1,
                write_nii=0,
                outprefix="mask",
                tracks_mm=0,
                length_thresh=0):
    """
    Creates density files for all tracks passing through a set of masks
    """
    # Each volume in vox_tracks_img is the density volume for a single mask
    # Leave 'through' argument as 0 to count number of tracks that originate/terminate
    # within a mask, set through to 1 to count number of tracks that intersect a mask
    xdim, ydim, zdim = header["dims"]
    mm_dims = np.array(header["vox_size"]) * np.array(header["dims"])
    masks_coords_list = []
    if write_nii == 1:
        vox_tracks_img = np.zeros((xdim, ydim, zdim, len(masks)))
    tracknums = [[] for x in range(len(masks))]
    for mask in masks:
        masks_coords_list.append(
            set(core.get_nonzero_coords(mask, nonzero_thresh)))
    for tracknum, track in enumerate(tracks):
        if through == 0:
            track_start_set = set([track[0]])
            track_end_set = set([track[-1]])
            for count, mask_coords_set in enumerate(masks_coords_list):
                if track_start_set & mask_coords_set or track_end_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            tracknums[count].append(tracknum)
                        if write_nii == 1:
                            for x, y, z in track:
                                if all(np.array([x, y, z]) < mm_dims):
                                    vox_tracks_img[x, y, z, count] += 1
                    else:
                        tracknums[count].append(tracknum)
                        if write_nii == 1:
                            for x, y, z in track:
                                if all(np.array([x, y, z]) < mm_dims):
                                    vox_tracks_img[x, y, z, count] += 1
        elif through == 1:
            track_set = set(track)
            # track_set = track
            for count, mask_coords_set in enumerate(masks_coords_list):
                if track_set & mask_coords_set:
                    if length_thresh:
                        track_len = tracklength(np.array(tracks_mm[tracknum]))
                        if track_len > length_thresh:
                            tracknums[count].append(tracknum)
                        if write_nii == 1:
                            for x, y, z in track:
                                if all(np.array([x, y, z]) < mm_dims):
                                    vox_tracks_img[x, y, z, count] += 1
                    else:
                        tracknums[count].append(tracknum)
                        if write_nii == 1:
                            for x, y, z in track:
                                if all(np.array([x, y, z]) < mm_dims):
                                    vox_tracks_img[x, y, z, count] += 1
    mask_density = [len(hits) for hits in tracknums]
    if write_nii == 0:
        np.savetxt('%s_density.txt' % outprefix, mask_density)
        return tracknums
    else:
        outnifti = nib.Nifti1Image(vox_tracks_img, np.eye(4))
        outnifti.to_filename('%s_density.nii' % outprefix)
        return tracknums
Example #13
0
def mask_funcconnec_matrix_sliding(nifti_file,
                                   masks_files,
                                   outfile=None,
                                   masks_threshes=[],
                                   multi_labels=[],
                                   zero_diag=True,
                                   ts_outfile=None,
                                   covariate_ts_file=None,
                                   window_length=30):
    """
    Calculates correlation matrix for a set of mask mean timeseries'
    masks_files: list of mask filenames with full path, can either be one mask
                 per file (in which case multi_labels should be []) or one file
                 with multiple numerical labels (multi_labels = [num1, num2, ...])
    masks_threshes: list of numerical values to use as lower threshold for separate
                    mask files
    covariate_ts_file: text file with timeseries for nuisance covariates to partial out
    window_length: the number of volumes to include in a sliding window correlation
    output options:
    1) correlation matrix
    """
    if multi_labels:
        masks_coords = core.get_mask_labels(masks_files[0],
                                            labels=multi_labels)
    else:
        if masks_threshes:
            masks_coords = []
            for count, mask in enumerate(masks_files):
                masks_coords.append(
                    core.get_nonzero_coords(mask, masks_threshes(count)))
        else:
            masks_coords = [
                core.get_nonzero_coords(mask) for mask in masks_files
            ]
    n_regions = len(masks_coords)
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if len(input.shape) > 3:
        ts_length = input.shape[3]
    else:
        ts_length = 1
    masks_mean_ts_array = np.zeros((len(masks_coords), ts_length))
    for count, mask_coords in enumerate(masks_coords):
        mask_array = [
            input_d[mask_coord[0], mask_coord[1], mask_coord[2], :]
            for mask_coord in mask_coords
        ]
        masks_mean_ts_array[count, :] = np.mean(mask_array, axis=0)
    if covariate_ts_file:
        nuis_reg = np.array(core.file_reader(covariate_ts_file))
        masks_mean_ts_array_resid = np.zeros((n_regions, ts_length))
        for i in range(n_regions):
            ts1 = np.atleast_2d(masks_mean_ts_array[i, :])
            reg = np.linalg.lstsq(nuis_reg, ts1.T)
            beta = reg[0]
            ts1_resid = np.squeeze(ts1.T - nuis_reg.dot(beta))
            masks_mean_ts_array_resid[i, :] = ts1_resid
    n_windows = len(range(ts_length - window_length))
    mats = np.zeros((n_regions, n_regions, n_windows))
    for k in range(ts_length - window_length):
        mat = np.zeros((n_regions, n_regions))
        ts_start = k
        ts_stop = k + window_length
        if covariate_ts_file:
            mat = np.corrcoef(masks_mean_ts_array_resid[:, ts_start:ts_stop])
        else:
            mat = np.corrcoef(masks_mean_ts_array[:, ts_start:ts_stop])
        if zero_diag:
            mat = mat * abs(1 - np.eye(mat.shape[0]))  # zero matrix diagonal
        mats[:, :, k] = mat
    if outfile:
        mats_2d = np.reshape(mats, [n_regions, n_regions * n_windows],
                             'F').T  # stack matrices vertically
        np.savetxt('%s.txt' % outfile, mats_2d)
    if ts_outfile:
        np.savetxt('%s.txt' % ts_outfile, masks_mean_ts_array)
    return mats, masks_mean_ts_array
Example #14
0
def mask_funcconnec_matrix(nifti_file,
                           masks_files,
                           outfile=None,
                           masks_threshes=[],
                           multi_labels=[],
                           partial=False,
                           cov=False,
                           zero_diag=True,
                           scrub_trs_file=None,
                           pca=False,
                           ts_outfile=None,
                           covariate_ts_file=None):
    """
    Calculates correlation/covariance matrix for a set of mask mean timeseries'
    masks_files: list of mask filenames with full path, can either be one mask
                 per file (in which case multi_labels should be []) or one file
                 with multiple numerical labels (multi_labels = [num1, num2, ...])
    masks_threshes: list of numerical values to use as lower threshold for separate
                    mask files
    covariate_ts_file: text file with timeseries for nuisance covariates to partial out
    output options:
    1) correlation matrix
    2) partial correlation matrix
    3) covariance matrix
    """
    if multi_labels:
        masks_coords = core.get_mask_labels(masks_files[0],
                                            labels=multi_labels)
    else:
        if masks_threshes:
            masks_coords = []
            for count, mask in enumerate(masks_files):
                masks_coords.append(
                    core.get_nonzero_coords(mask, masks_threshes(count)))
        else:
            masks_coords = [
                core.get_nonzero_coords(mask) for mask in masks_files
            ]
    n_regions = len(masks_coords)
    connect_mat = np.zeros((len(masks_coords), len(masks_coords)))
    input = nib.load(nifti_file)
    input_d = input.get_data()
    if scrub_trs_file:
        scrub_trs = np.array(
            core.file_reader(scrub_trs_file))  # array of TRs to exclude
        keep_trs = np.nonzero(scrub_trs == 0)[0]  # array of TRs to include
    if len(input.shape) > 3:
        if scrub_trs_file:
            ts_length = len(keep_trs)
        else:
            ts_length = input.shape[3]
    else:
        ts_length = 1
    masks_mean_ts_array = np.zeros((len(masks_coords), ts_length))
    for count, mask_coords in enumerate(masks_coords):
        if scrub_trs_file:
            mask_array = [
                input_d[mask_coord[0], mask_coord[1], mask_coord[2], keep_trs]
                for mask_coord in mask_coords
            ]
        else:
            mask_array = [
                input_d[mask_coord[0], mask_coord[1], mask_coord[2], :]
                for mask_coord in mask_coords
            ]
        if pca:
            [coeff, score, latent] = princomp(np.matrix(mask_array))
            masks_mean_ts_array[count, :] = score[0, :]
        else:
            masks_mean_ts_array[count, :] = np.mean(mask_array, axis=0)
    if partial:
        mat = core.partialcorr_matrix(masks_mean_ts_array)
    elif cov:
        mat = np.cov(masks_mean_ts_array)
    elif covariate_ts_file:
        nuis_reg = np.array(core.file_reader(covariate_ts_file))
        mat = np.zeros((n_regions, n_regions))
        for i in range(n_regions):
            for j in range(i + 1, n_regions):
                n1n2 = np.hstack((np.atleast_2d(masks_mean_ts_array[i, :]).T,
                                  np.atleast_2d(masks_mean_ts_array[j, :]).T))
                X = np.vstack((n1n2.T, nuis_reg.T))
                try:
                    pc_mat = core.partialcorr_matrix(X)
                    mat[i, j] = pc_mat[0, 1]
                except:
                    mat[i, j] = 0
                    print('Mask %d is empty, correlation will be stored as 0' %
                          (j))
        mat = mat + mat.T
    else:
        mat = np.corrcoef(masks_mean_ts_array)
    if zero_diag:
        mat = mat * abs(1 - np.eye(mat.shape[0]))  # zero matrix diagonal
    if outfile:
        np.savetxt('%s.txt' % outfile, mat)
    if ts_outfile:
        np.savetxt('%s.txt' % ts_outfile, masks_mean_ts_array)
    return mat, masks_mean_ts_array