Example #1
0
 def test_backward(self):
     A = Square()
     B = Exp()
     C = Square()
     x = Variable(np.array(0.5))
     a = A(x)
     b = B(a)
     y = C(b)
     y.grad = np.array(1.0)
     b.grad = C.backward(y.grad)
     a.grad = B.backward(b.grad)
     x.grad = A.backward(a.grad)
     print(x.grad)
Example #2
0
 def soy_showcase(self):
     # sanmartin
     sanmartin = Variable('soy/afascl')
     rosario = Variable('soy/bcr')
     chicago = Variable('soy/chicago')
     # foorecast soy sanmartin
     regression = TimeRegression(self.date_list, self.day, [rosario])
     fx, _, rmse = regression.pattern()
     price = fx(regression.future_x)
     filename = draw(regression, 'graph_soy_rosario.png')
     self.tweet(('Estimación Soja Rosario para el'
                 ' %s: AR$ %.f (RMSE: AR$ %.f)') %
                (self.day.strftime('%d-%m-%Y'), price, rmse), filename)
     regression = TimeRegression(self.date_list, self.day, [chicago])
     fx, _, rmse = regression.pattern()
     price = fx(regression.future_x)
     filename = draw(regression, 'graph_soy_chicago.png')
     self.tweet(('Estimación Soja Chicago para el'
                 ' %s: U$D %.f (RMSE: U$D %.f)') %
                (self.day.strftime('%d-%m-%Y'), price, rmse), filename)
     regression = TimeRegression(self.date_list, self.day, [sanmartin])
     fx, _, rmse = regression.pattern()
     price = fx(regression.future_x)
     filename = draw(regression, 'graph_soy_sanmartin.png')
     self.tweet(('Estimación Soja puerto San Martín con descarga para el'
                 ' %s: AR$ %.f (RMSE: AR$ %.f)') %
                (self.day.strftime('%d-%m-%Y'), price, rmse), filename)
     regression = VariableRegression(self.date_list, self.day,
                                     [chicago, sanmartin])
     fx, _, rmse = regression.pattern()
     filename = draw(regression, 'graph_soy_related.png')
     price = fx(regression.future_x)
     x, y, dt = regression.data
     pearson = regression.pearson_correlation()
     m_dt = max(dt)
     m_dt = int_to_date(m_dt) if isinstance(m_dt, int) else m_dt
     try:
         self.tweet(('Correlación Soja Chicago con pto. San Martín hasta el'
                     ' %s: AR$ %.f (RMSE: AR$ %.f, Pearson: %.2f%%)') %
                    (m_dt.strftime('%d-%m-%Y'), price, rmse, pearson),
                    filename)
     except AttributeError:
         pass
     self.tweet(
         'El código puede ser descargado desde https://github.com/limiear/soyprice.',
         [])
Example #3
0
    def test_composite_function_differential(self):
        def f(x):
            A = Square()
            B = Exp()
            C = Square()
            return C(B(A(x)))

        x = Variable(np.array(0.5))
        dy = numerical_diff(f, x)
        print(dy)
Example #4
0
    def test_composite(self):
        A = Square()
        B = Exp()
        C = Square()

        x = Variable(np.array(0.5))
        a = A(x)
        b = B(a)
        y = C(b)
        print(y.data)
Example #5
0
    def test_function_chain_backward(self):
        A = Square()
        B = Exp()
        C = Square()

        x = Variable(np.array(0.5))
        a = A(x)
        b = B(a)
        y = C(b)
        y.grad = np.array(1.0)
        C = y.creator
        b = C._input
        b.grad = C.backward(y.grad)
        B = b.creator
        a = B._input
        a.grad = B.backward(b.grad)

        A = a.creator
        x = A._input
        x.grad = A.backward(a.grad)
        print(x.grad)
Example #6
0
 def dollar_showcase(self):
     dollars = Variable('dollar/blue')
     regression = TimeRegression(self.date_list, self.day, [dollars])
     fx, _, rmse = regression.pattern()
     price = fx(regression.future_x)
     filename = draw(regression, 'graph_dollar.png')
     try:
         rmse = int(rmse)
         print self.day, price, rmse, filename
         self.tweet(('Estimación Dollar Blue para el %s: AR$ %.2f '
                     '(RMSE: AR$ %.2f)') %
                    (self.day.strftime('%d-%m-%Y'), price, rmse), filename)
     except ValueError:
         pass
Example #7
0
    def test_function_chain(self):
        A = Square()
        B = Exp()
        C = Square()

        x = Variable(np.array(0.5))
        a = A(x)
        b = B(a)
        y = C(b)
        self.assertTrue(y.creator == C)
        self.assertTrue(y.creator._input == b)
        self.assertTrue(y.creator._input.creator == B)
        self.assertTrue(y.creator._input.creator._input == a)
        self.assertTrue(y.creator._input.creator._input.creator == A)
        self.assertTrue(y.creator._input.creator._input.creator._input == x)
Example #8
0
 def test_differential(self):
     f = Square()
     x = Variable(np.array(2.0))
     dy = numerical_diff(f, x)
     print(dy)
Example #9
0
 def test_initialize(self):
     data = np.array(1.0)
     x = Variable(data)
     self.assertEqual(x.data, data)
Example #10
0
 def test_function(self):
     x = Variable(np.array(10))
     f = Square()
     y = f(x)
     self.assertTrue(isinstance(y, Variable))
     print(y.data)
Example #11
0
from core import Variable
from operation import *

if __name__ == "__main__":

    a = Variable(1.0)
    b = add(a, a)
    c = square(a)
    d = add(a, b)
    e = add(c, d)
    e.backward()
    print(e.data)
    print(a.grad)

    a.clearGrad()

    print(a.grad)
Example #12
0
from core import Variable
from operation import *

a = Variable(2)
b = square(a)
c = square(b)
d = square(c)
e = square(d)
e.backward()
print(a.grad)
Example #13
0
from core import Variable
from operation import *

if __name__ == "__main__":

    a = Variable(1.0)
    b = add(a,a)
    b.backward()
    print(b.data)
    print(a.grad)