def f_0(self): data_list = self.data_list z_instance = ZScore() mean_instance = ArithMean() varc_instance = Variance() std_instance = Std_dev() mean = mean_instance.mean(data_list) varc = varc_instance.varc(data_list, mean) std_dev = std_instance.Std_calc(varc) z_list = [] for i in range(0, len(data_list)): z = z_instance.z_score(mean, std_dev, data_list[i]) z_list.insert(i, z) return z_list
def asymp_sig(self): dif = self.differnte() value_list = self.z_value() value = value_list[1] print(value) mean_instance = ArithMean() std_instance = Std_dev() var_instance = Variance() mean = mean_instance.mean(dif) varc = var_instance.varc(dif, mean) std = std_instance.Std_calc(varc) z_instance = ZScore() Asymp = 1 - (2 * z_instance.z_score_value(value)) print(z_instance.z_score_value(value)) return Asymp