def default_inputs(self): return DefaultInputs( axes=range(self.x.rank), gamma=None, beta=None, epsilon=1e-5, )
def default_inputs(self): return DefaultInputs( target_height=1, target_width=1, normalized_coordinates=False, spatial_scale=1., box_coordinate_mode="CONRNERS_HEIGHT_FIRST", sampling_mode="DEFAULT", )
def default_inputs(self): num_spatial_dims = self.x.rank - 2 return DefaultInputs( bias=None, strides=[1] * num_spatial_dims, pad_type="valid", pad=[0] * num_spatial_dims * 2, dilations=[1] * num_spatial_dims, groups=1, )
def default_inputs(self): return super().default_inputs() + \ DefaultInputs( nbits=8, )
def default_inputs(self): return DefaultInputs( target_size_height=1, target_size_width=1, sampling_mode="DEFAULT", )
def default_inputs(self): return DefaultInputs( scale_factor_height=1, scale_factor_width=1, align_corners=True, )
def default_inputs(self): return DefaultInputs( scale_factor_height=1, scale_factor_width=1, )
def default_inputs(self): return DefaultInputs( gamma=None, beta=None, epsilon=1e-5, )
def default_inputs(self): return DefaultInputs( alpha=1e-4, beta=0.75, k=1., )
def default_inputs(self): return DefaultInputs(epsilon=1e-6, )
def default_inputs(self): Dout = self.weight.shape[0] return DefaultInputs(bias=[0.] * Dout, )
def default_inputs(self): return DefaultInputs( transpose_x=False, transpose_y=False, )