Example #1
0
class crop(Operation):
    """
    Crop the spatial dimensions (last two dimensions) of the input by the
    specified amounts.

    Parameters
    ----------
    x: tensor<[\*D, H1, W1],T> (Required)
        * Must be at least rank ``3``.
    crop_height: const<2, i32> (Required)
        * Amount to be cropped from the top and bottom of the height dimension
          (``axis=-2``).
    crop_width: const<2, i32> (Required)
        * Amount to be cropped from the left and right sides of the width dimension (``axis=-1``).

    Returns
    -------
    tensor<[\*D, H2, W2],T>
        * Tensor with same type as the input.
        * ``H2`` = ``H1`` - crop_height[0] - crop_height[1].
        * ``W2`` = ``W1`` - crop_width[0] - crop_width[1].

    Attributes
    ----------
    T: fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        crop_height=IntTensorInputType(const=True),
        crop_width=IntTensorInputType(const=True),
    )

    def __init__(self, **kwargs):
        super(crop, self).__init__(**kwargs)

    def type_inference(self):
        if self.x.rank < 3:
            raise ValueError(
                'input to the "crop" op must at least be of rank 3. Provided {}'
                .format(self.x.rank))

        crop_height = self.crop_height.val
        crop_width = self.crop_width.val

        if len(crop_height.flatten()) != 2:
            raise ValueError(
                "crop_height must have 2 elements. Provided {}".format(
                    len(crop_height.flatten())))

        if len(crop_width.flatten()) != 2:
            raise ValueError(
                "crop_width must have 2 elements. Provided {}".format(
                    len(crop_width.flatten())))

        input_shape = list(self.x.shape)
        ret_shape = (input_shape[:-2] +
                     [input_shape[-2] - crop_height[0] - crop_height[1]] +
                     [input_shape[-1] - crop_width[0] - crop_width[1]])
        return types.tensor(self.x.dtype, ret_shape)
Example #2
0
class elementwise_binary(Operation):
    """
    Elementwise Binary Op Superclass
    """
    input_spec = InputSpec(x=ScalarOrTensorInputType(), y=ScalarOrTensorInputType(),)

    def __init__(self, **kwargs):
        super(elementwise_binary, self).__init__(**kwargs)

    def type_inference(self):
        typea = self.x.sym_type
        typeb = self.y.sym_type
        primitive_type = promoted_primitive_type(typea, typeb)
        if primitive_type is None:
            raise ValueError("Incompatible primitive types in broadcast operation")
        primitive_type = self.get_dtype(primitive_type)

        # broadcast
        if not types.is_tensor(typea) and not types.is_tensor(typeb):
            # both typea and typeb are not tensors
            return primitive_type
        if types.is_tensor(typea) and not types.is_tensor(typeb):
            # a is tensor, b is not
            return types.tensor(primitive_type, typea.get_shape())
        if not types.is_tensor(typea) and types.is_tensor(typeb):
            # a is not tensor, b is
            return types.tensor(primitive_type, typeb.get_shape())

        # both a, b are tensors
        shapea = list(typea.get_shape())
        shapeb = list(typeb.get_shape())
        ret_shape = broadcast_shapes(shapea, shapeb)
        return types.tensor(primitive_type, ret_shape)

    @precondition(allow=VALUE)
    def value_inference(self):
        return self._cast_check_value_inferene(self.x.val, self.y.val)

    def get_operator(self):
        """
        All subclasses have to implement this.
        """
        raise NotImplementedError()

    def get_dtype(self, promoted_dtype):
        """
        Override if output primitive type is different from input types
        (e.g., less, greater)
        """
        return promoted_dtype

    def _cast_check_value_inferene(self, a, b):
        """
        If one of the input is tensor, cast the result to tensor.
        """
        to_cast = any([isinstance(x, np.ndarray) for x in [a, b]])
        result = self.get_operator()(a, b)
        return result if not to_cast else np.array(result)
Example #3
0
class upsample_nearest_neighbor(Operation):
    """
    Upsample the spatial dimensions (last two dimensions) of the input
    by integer scale factors using nearest-neighbor interpolation.

    Parameters
    ----------
    x: tensor<[\*D, H1, W1],T>  (Required)
        * Must be at least rank ``3``.
    scale_factor_height: const<i32> or const<fp32> (Optional, default=1)
        * Scale factor for the height dimension (``axis=-2``).
        * Can be either an integer or fractional.
    scale_factor_width: const<i32> or const<fp32> (Optional, default=1)
        * Scale factor for the width dimension (``axis=-1``).
        * Can be either an integer or fractional.

    Returns
    -------
    tensor<[\*D, H2, W2],T>
        * Tensor with same type as the input.
        * ``H2`` = floor(``H1`` * ``scale_factor_height``).
        * ``W2`` = floor(``W1`` * ``scale_factor_width``).

    Attributes
    ----------
    T: fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        scale_factor_height=IntOrFloatInputType(const=True, optional=True),
        scale_factor_width=IntOrFloatInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            scale_factor_height=1,
            scale_factor_width=1,
        )

    def __init__(self, **kwargs):
        super(upsample_nearest_neighbor, self).__init__(**kwargs)

    def type_inference(self):
        if self.x.rank < 3:
            raise ValueError(
                'input to the "upsample_nearest_neighbor" op must have rank at least 3'
            )

        ret_shape = list(self.x.shape)
        ret_shape[-1] = np.floor(self.scale_factor_width.val *
                                 ret_shape[-1]) if not is_symbolic(
                                     ret_shape[-1]) else get_new_symbol()
        ret_shape[-2] = np.floor(self.scale_factor_height.val *
                                 ret_shape[-2]) if not is_symbolic(
                                     ret_shape[-2]) else get_new_symbol()
        return types.tensor(self.x.dtype, ret_shape)
Example #4
0
class local_response_norm(Operation):
    """
    Apply local response normalization to the n-dimensional input tensor:

    .. math::
       x_i \\leftarrow \\dfrac{x_i}{\\left ( k + \\dfrac{\\alpha}{\\text{size}} \\sum_j x_j^2 \\right )^\\beta}


    Parameters
    ----------
    x: tensor<[n,C,*D], T> (Required)
        * Input tensor, ``3 <= rank(x) <= 4``.
        * ``*D`` refers to the spatial dimensions, ``1 <= rank(*D) <= 2``.
        * ``n`` is the batch dimension.
    size: const i32 (Required)
        * Amount of neighboring channels to normalize.
    alpha: const fp32 (Optional)
        * Scale factor.
        * Default is ``1e-4``.
    beta: const fp32 (Optional)
        * An exponent.
        * Default is ``0.75``.
    k: const fp32 (Optional)
        * Additive factor.
        * Default is ``1.0``.

    Returns
    -------
    tensor<[n,C,*D], T>
        * Same type and shape as the input tensor ``x``.

    Attributes
    ----------
    T: fp16, fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        size=IntInputType(const=True),
        alpha=FloatInputType(const=True, optional=True),
        beta=FloatInputType(const=True, optional=True),
        k=FloatInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            alpha=1e-4,
            beta=0.75,
            k=1.,
        )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def type_inference(self):
        x_shape = self.x.shape
        return types.tensor(self.x.dtype, tuple(x_shape))
Example #5
0
class resize_nearest_neighbor(Operation):
    """
    Resize the spatial (last two) dimensions to the specified target size
    using nearest neighbor interpolation. Although this op is similar to
    ``upsample_nearest_neighbor``, ``resize_nearest_neighbor`` works with
    a target size rather than with scale factors.

    Parameters
    ----------
    x: tensor<[\*D, H1, W1], T> (Required)
        * Must be at least rank ``3``.
    target_size_height: const<int32> (Required)
        * Target spatial size for the height dimension (``axis=-2``).
    target_size_width: const<int32> (Required)
        * Target spatial size for the width dimension (``axis=-1``).

    Notes
    -----
    See ``resize_bilinear`` for examples.

    See Also
    --------
    resize_bilinear

    Returns
    -------
    tensor<[\*D, H2, W2], T>
        * Tensor with same type as the input.
        * ``H2`` = ``target_size_height``.
        * ``W2`` = ``target_size_width``.

    Attributes
    ----------
    T: fp16, fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        target_size_height=IntInputType(const=True),
        target_size_width=IntInputType(const=True),
    )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def type_inference(self):
        if self.x.rank < 3:
            raise ValueError(
                'input to the "resize_nearest_neighbor" op must have rank at least 3'
            )

        ret_shape = list(self.x.shape)
        ret_shape[-1] = int(self.target_size_width.val)
        ret_shape[-2] = int(self.target_size_height.val)
        return types.tensor(self.x.dtype, ret_shape)
Example #6
0
class instance_norm(Operation):
    """
    Apply instance normalization to the n-dimensional input tensor.

    Parameters
    ----------
    x: tensor<[n,C,*D], T>  (Required)
        * ``3 <= rank(x) <= 4``.
        * ``*D`` refers to the spatial dimensions, ``1 <= rank(*D) <= 2``.
        * ``n`` is the batch dimension.
    gamma: const tensor<[C], T> (Optional)
        * Optional scale applied to normalized tensor.
        * Default to all ones.
    beta: const tensor<[C], T> (Optional)
        * Optional offset applied to normalized tensor.
        * Default to all zeros.
    epsilon: const f32 (Optional)
        * Default to ``1e-5``.

    Returns
    -------
    tensor<[n,C,*D], T>
        * Output tensor has the same shape and type as the input ``x``.

    Attributes
    ----------
    T: fp16, fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        gamma=TensorInputType(const=True, optional=True),
        beta=TensorInputType(const=True, optional=True),
        epsilon=FloatInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            gamma=None,
            beta=None,
            epsilon=1e-5,
        )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def type_inference(self):
        x_shape = self.x.shape
        return types.tensor(self.x.dtype, tuple(x_shape))
Example #7
0
class l2_norm(Operation):
    """
    Apply L2 normalization to the n-dimensional input tensor. That is, divide the input
    tensor by the square root of the sum of squares of all elements of the input.

    .. math::
       x_i \\leftarrow \\dfrac{x_i}{\\sqrt{\\sum{x_i^2} + \\epsilon}}


    Parameters
    ----------
    x: tensor<[*D,C,H,W], T> (Required)
        * Input tensor, ``rank(x) >= 3``.
        * ``*D`` refers to the spatial dimensions, ``rank(*D) >= 0``.
        * ``n`` is the batch dimension.
        * For ranks greater than 3, the leading dimensions, starting from ``0`` to ``-4`` (inclusive),
          are all treated as batch.
    epsilon: const fp32 (Optional)
        * Small constant to avoid division by ``0``.
        * Optional, defaults to ``1e-6``.

    Returns
    -------
    tensor<[\*D,C,H,W], T>
        * Same type and shape as the input tensor ``x``.

    Attributes
    ----------
    T: fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        epsilon=FloatInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(epsilon=1e-6, )

    def __init__(self, **kwargs):
        super(l2_norm, self).__init__(**kwargs)

    def type_inference(self):
        x_shape = self.x.shape
        return types.tensor(self.x.dtype, tuple(x_shape))
Example #8
0
class einsum(Operation):
    """
    Perform tensor multiplication expressed according to the einsum notation.
    The mode/equation that is currently supported is mutiplying matrices that are laid out on
    dimensions -1 and -3, treating all the other dimensions as batch. Broadcasting is supported along batch dimensions.
    In particular, the inputs must be of the following shapes:

    * Rank 4 input case
        * Input 1: ``[B, C, H, W1]``
        * Input 2: ``[B, W1, H, W2]``
        * Output: ``[B, C, H, W2]``
        * If, for one of the inputs, the dimensions ``"B"`` or ``"H"`` is 1, they are broadcast to match the other input.

    * Rank 3 input case
        * Input 1: ``[C, H, W1]``
        * Input 2: ``[W1, H, W2]``
        * Output: ``[C, H, W2]``
        * If, for one of the inputs, the dimension ``"H"`` is 1, it is broadcast to match the other input.

    Parameters
    ----------
    values : Tuple(tensor_1, tensor_2)
        * Where:
            * ``tensor_1``: ``tensor<[*D, C, H, W1], T>``
            * Must be of rank 3 or 4.
            * ``tensor_2``: ``tensor<[*D, W1, H, W2], T>``
            * Must be of rank 3 or 4.
    equation: const<str>
        * Supported equations are:
            * ``"nchw,nwhu->nchu"`` and its equivalent equation strings
            * ``"chw,whr->chr"`` and its equivalent equation strings

    Returns
    -------
    tensor<[*D, C, H, W2], T>
        * Same ranks as the inputs.

    Attributes
    ----------
    T: fp16, fp32
    """

    input_spec = InputSpec(values=TupleInputType(),
                           equation=StringInputType(const=True))

    def __init__(self, **kwargs):
        super(einsum, self).__init__(**kwargs)

    def type_inference(self):
        if len(self.values) != 2:
            raise ValueError("einsum op must get \'values\' of length 2")
        x = self.values[0]
        y = self.values[1]

        # validate the input shapes
        x_type = x.dtype
        assert x_type == y.dtype, "input types do not match"
        x_shape = x.shape
        y_shape = y.shape
        assert len(x_shape) == len(y_shape), "inputs not of the same rank"
        assert x_shape[-1] == y_shape[-3], "input shapes incompatible"
        if x_shape[-2] != 1 and y_shape[-2] != 1:
            assert x_shape[-2] == y_shape[-2], "input shapes incompatible"
        if len(x_shape) == 4:
            if x_shape[-4] != 1 and y_shape[-4] != 1:
                assert x_shape[-4] == y_shape[-4], "input shapes incompatible"

        # validate the equation
        input1_vec, input2_vec, output_vec = parse_einsum_equation(
            self.equation.val)

        assert \
            (input1_vec == [0, 1, 2, 3] and input2_vec == [0, 3, 2, 4] and output_vec == [0, 1, 2, 4]) or \
            (input1_vec == [0, 1, 2] and input2_vec == [2, 1, 3] and output_vec == [0, 1, 3]), \
            "unsupported einsum equation {}".format(self.equation.val)

        # calculate the output shape
        def _get_dim_value(shape1, shape2, dim):
            if is_symbolic(shape1[dim]) and is_symbolic(shape2[dim]):
                return shape1[dim]
            elif is_symbolic(shape1[dim]):
                return shape1[dim]
            elif is_symbolic(shape2[dim]):
                return shape2[dim]
            else:
                return max(shape1[dim], shape2[dim])

        out_shape = [1 for i in range(len(x_shape))]
        out_shape[-1] = y_shape[-1]
        out_shape[-3] = x_shape[-3]
        out_shape[-2] = _get_dim_value(x_shape, y_shape, -2)
        if len(x_shape) == 4:
            out_shape[-4] = _get_dim_value(x_shape, y_shape, -4)
        return types.tensor(x_type, tuple(out_shape))

    @precondition(allow=VALUE)
    def value_inference(self):
        x = self.values[0]
        y = self.values[1]
        x_shape = x.val.shape
        y_shape = y.val.shape
        # broadcast dimensions -2 and -4, if required
        if len(x_shape) == 4:
            x_shape = (max(x_shape[0], y_shape[0]), x_shape[1],
                       max(x_shape[2], y_shape[2]), x_shape[3])
            y_shape = (max(x_shape[0], y_shape[0]), y_shape[1],
                       max(x_shape[2], y_shape[2]), y_shape[3])
        elif len(x_shape) == 3:
            x_shape = (x_shape[0], max(x_shape[1], y_shape[1]), x_shape[2])
            y_shape = (y_shape[0], max(x_shape[1], y_shape[1]), y_shape[2])
        else:
            raise ValueError("ranks of the input must be 3 or 4")
        res = np.einsum(self.equation.val, np.broadcast_to(x.val, x_shape),
                        np.broadcast_to(y.val, y_shape))
        return res
Example #9
0
class crop_resize(Operation):
    """
    Resize the spatial dimensions (last two dimensions) of the first input
    according to the bounding boxes specified in the second input, using
    bilinear interpolation.

    Parameters
    ----------

    x: tensor<[B, C, H, W],T> (Required)
        * The input, from which patches (regions of interest) are extracted
          and resized using bilinear interpolation.
        * Rank ``4``.

    roi: tensor<[N,1,4,1,1], T> or tensor<[N,1,5,1,1], T> (Required)
        * Regions of interest, or coordinates of the boxes. The above input
          represents coordinates of ``N`` boxes.
        * The convention to express coordinates  depends on the value of the
          input ``box_coordinate_mode``.
        * Rank ``5``.
        * If ``tensor<[N,1,4,1,1], T>``: Resized images are computed for all
          ``B`` input images.
        * If ``tensor<[N,1,5,1,1], T>``: The first element from ``axis=-3``
          to be resized is an index. It must be within range ``[0, B)``.

    target_height: const<i32> (Optional, Default=1)
        * Target height for resizing each patch.

    target_width: const<i32> (Optional, Default=1)
        * Target width for resizing each patch.

    normalized_coordinates : const<bool> (Optional, default=False)
        * If true, the bounding box coordinates must be in the
          interval ``[0, 1]``. Scaling is based on the input spatial
          dimensions: ``(H_in - 1)`` for height and ``(W_in - 1)`` for width.
        * If false, the bounding box coordinates must be in the interval
          ``[0, H_in - 1]`` for height dimensions and ``[0, W_in - 1]`` for
          width dimensions.

    spatial_scale : const<fp32> (Optional, default=1.0)
        * Additional spatial scale that multiplies the bounding box coordinates.
          You would use this to implement the RoI Align layer, which typically
          uses unnormalized RoI coordinates along with a spatial scale that is
          less than or equal to 1.

    box_coordinate_mode: const<str> (Optional, default="CORNERS_HEIGHT_FIRST")
        * Specifies the convention for specifying the four bounding box
          coordinates for an image of size ``(Height, Width)``. The ``(0,0)``
          coordinate corresponds to the top-left corner of the image.
        * This parameter can take one of four values:

          "CORNERS_HEIGHT_FIRST": ``[h_start, w_start, h_end, w_end]``

          "CORNERS_WIDTH_FIRST": ``[w_start, h_start, w_end, h_end]``

          "CENTER_SIZE_HEIGHT_FIRST": ``[h_center, w_center, box_height, box_width]``

          "CENTER_SIZE_WIDTH_FIRST": ``[w_center, h_center, box_width, box_height]``

    sampling_mode : const<str> (Optional, default="DEFAULT")
        * This parameter can take ``"STRICT_ALIGN_CORNERS"``,
          ``"ALIGN_CORNERS"``, ``"DEFAULT"``, ``"OFFSET_CORNERS"`` or
          ``UNALIGN_CORNERS`` as values.
        * This same convention is used by the ``resize_bilinear`` op (see
          that op for details).

    See Also
    --------
    resize_bilinear

    Returns
    -------
    tensor<[N, B, C, target_height, target_width],T> or tensor<[N, 1, C, target_height, target_width],T>
        * Tensor with same type as the input.
        * If ``roi : tensor<[N,1,4,1,1], T>``, the output is
          ``tensor<[N, B, C, target_height, target_width],T>``.
          Total crops = ``N*B``; that is, ``N`` crops for each input in the batch.
        * If ``roi : tensor<[N,1,5,1,1], T>``, the output is
          ``tensor<[N, 1, C, target_height, target_width],T>``.
          Total crops = ``N``; that is, 1 crop for given input image index
          in the batch.

    Attributes
    ----------
    T: fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        roi=TensorInputType(),
        target_height=IntInputType(const=True, optional=True),
        target_width=IntInputType(const=True, optional=True),
        normalized_coordinates=BoolInputType(const=True, optional=True),
        spatial_scale=FloatInputType(const=True, optional=True),
        box_coordinate_mode=StringInputType(const=True, optional=True),
        sampling_mode=StringInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            target_height=1,
            target_width=1,
            normalized_coordinates=False,
            spatial_scale=1.,
            box_coordinate_mode="CONRNERS_HEIGHT_FIRST",
            sampling_mode="DEFAULT",
        )

    def __init__(self, **kwargs):
        super(crop_resize, self).__init__(**kwargs)

    def type_inference(self):
        if self.x.rank != 4:
            raise ValueError(
                'input to the "crop_resize" op must be of rank 4. Provided {}'.
                format(self.x.rank))

        if self.roi.rank != 5:
            raise ValueError(
                'ROI input to the "crop_resize" op must be of rank 5, provided {}'
                .format(self.roi.rank))

        if self.sampling_mode.val not in {
                "STRICT_ALIGN_CORNERS",
                "ALIGN_CORNERS",
                "UNALIGN_CORNERS",
                "DEFAULT",
                "OFFSET_CORNERS",
        }:
            raise ValueError(
                '"crop_resize" op: unrecognized sampling mode "{}"'.format(
                    self.sampling_mode))

        # ret_shape: [N] + [B, C, h_out, w_out]
        N, B, C = self.roi.shape[0], self.x.shape[0], self.x.shape[1]
        ret_shape = [N, B, C, self.target_height.val, self.target_width.val]
        return types.tensor(self.x.dtype, ret_shape)
Example #10
0
class resize_bilinear(Operation):
    """
    Resize the spatial (last two) dimensions to the specified target size
    using bilinear interpolation. Although this op is similar to
    ``upsample_bilinear``, ``resize_bilinear`` works with a target size
    rather than with scale factors.

    Parameters
    ----------
    x: tensor<[\*D, H1, W1],T> (Required)
        * Must be at least rank ``3``.
    target_size_height: const<int32> (Optional, default=1)
        * Target spatial size for the height dimension (``axis=-2``).
    target_size_width: const<int32> (Optional, default=1)
        * Target spatial size for the width dimension (``axis=-1``).
    sampling_mode: const<str> (Optional, default="DEFAULT")
        * This parameter can take ``"STRICT_ALIGN_CORNERS”``, ``"ALIGN_CORNERS"``,
          ``"DEFAULT"``, ``"OFFSET_CORNERS"`` or ``UNALIGN_CORNERS`` as values.
          For details, see the Notes section.

    Notes
    -----
    To understand the ``sampling_mode`` parameter, consider the 1-D case.
    You need to sample a grid of pixels whose values are computed using
    linear interpolation. This parameter controls how the grid is sampled.
    If the input grid is ``[0, Xin-1]`` (corresponding to an input size of
    ``Xin``), and if the output size is ``Xout``, then the grid points are
    sampled in the following manner:

    .. sourcecode:: python

        # "STRICT_ALIGN_CORNERS":
        spacing = (Xin - 1) / (Xout - 1)
        grid_point[i] = min(Xin-1, max(0, i*spacing)), for i=0,1,...,Xout-1

        # "ALIGN_CORNERS": Same as "STRICT_ALIGN_CORNERS" unless Xout=1,
        # in which case:
        grid_point[0] = (Xin-1) / 2, if Xout==1

        # "DEFAULT":
        spacing = (Xin - Xin/Xout) / (Xout - 1)
        grid_point[i] = min(Xin-1, max(0, i*spacing)), for i=0,1,...,Xout-1

        # "OFFSET_CORNERS":
        delta = max(1, Xin - 1) / Xout
        spacing = ((Xout - 1) * delta) / (Xout - 1)
        grid_point[i] = min(Xin-1, max(0, 0.5*delta + i*spacing)), for
        ...   i=0,1,...,Xout-1

        # "UNALIGN_CORNERS":
        spacing = Xin / Xout
        grid_point[i] = min(Xin - 1, max(0, i*spacing + 0.5*spacing - 0.5)), for i=0,1,...,Xout-1

    For example:

    .. sourcecode:: python

        Xin = 2
        input_interval = [0,1]

    Grid points:

    .. sourcecode:: python

        [0., 0.1, 0.5, 0.9, 1.] (Xout = 5, UNALIGN_CORNERS)
        [0., 0.25, 0.5, 0.75, 1.] (Xout = 5, "STRICT_ALIGN_CORNERS" / "ALIGN_CORNERS")
        [0., 0.4, 0.8, 1., 1.] (Xout = 5, "DEFAULT")
        [0.1, 0.3, 0.5, 0.7, 0.9] (Xout = 5, "OFFSET_CORNERS")

        [0., 0., 0.33, 0.67, 1., 1.] (Xout = 6, UNALIGN_CORNERS)
        [0., 0.2, 0.4, 0.6, 0.8, 1.] (Xout = 6, "STRICT_ALIGN_CORNERS" / "ALIGN_CORNERS")
        [0., 0.33, 0.67, 1., 1., 1.] (Xout = 6, "DEFAULT")
        [0.08, 0.25, 0.42, 0.58, 0.75, 0.92] (Xout = 6, "OFFSET_CORNERS")

    Note the following similarities:

        * ``"DEFAULT"`` is same as
          ``tf.raw_ops.ResizeBilinear(align_corners=False,
          half_pixel_centers=False)``.
        * ``"STRICT_ALIGN_CORNERS"`` is same as
          ``tf.raw_ops.ResizeBilinear(align_corners=True,
          half_pixel_centers=False)``.

    Returns
    -------
    tensor<[\*D, H2, W2],T>
        * Tensor with same type as the input.
        * ``H2`` = ``target_size_height``.
        * ``W2`` = ``target_size_width``.

    Attributes
    ----------
    T: fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        target_size_height=IntInputType(const=True, optional=True),
        target_size_width=IntInputType(const=True, optional=True),
        sampling_mode=StringInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            target_size_height=1,
            target_size_width=1,
            sampling_mode="DEFAULT",
        )

    def __init__(self, **kwargs):
        super(resize_bilinear, self).__init__(**kwargs)

    def type_inference(self):
        if self.x.rank < 3:
            raise ValueError(
                'input to the "resize_bilinear" op must have rank at least 3')

        if self.sampling_mode.val not in {
                "STRICT_ALIGN_CORNERS",
                "ALIGN_CORNERS",
                "UNALIGN_CORNERS",
                "DEFAULT",
                "OFFSET_CORNERS",
        }:
            raise ValueError(
                '"resize_bilinear" op: unrecognized sampling mode "{}"'.format(
                    self.sampling_mode.val))

        ret_shape = list(self.x.shape)
        ret_shape[-1] = self.target_size_width.val
        ret_shape[-2] = self.target_size_height.val
        return types.tensor(self.x.dtype, ret_shape)
Example #11
0
class upsample_bilinear(Operation):
    """
    Upsample the spatial dimensions (last two dimensions) of the input
    by scale factors using bilinear interpolation.
    The upsample_bilinear operation in MIL corresponds to the recompute_scale_factor=True
    mode in the pyorch bilinear interpolation op. That is,
    the scale factor is recomputed by the output size.
    Note that when the scale_factor_height and scale_factor_width are floating point, this
    could result in a different scale factor due to rounding.

    Parameters
    ----------
    x: tensor<[\*D, H1, W1],T>  (Required)
        * Must be at least rank ``3``.
    scale_factor_height: const<T2> (Optional, default=1)
        * Scale factor for the height dimension (``axis=-2``).
    scale_factor_width: const<T2> (Optional, default=1)
        * Scale factor for the width dimension (``axis=-1``).
    align_corners: const<bool> (Optional, default=True)
        * This parameter determines how samples are chosen for bilinear
          interpolation. For details, see the Notes section.

    Notes
    -----
    To understand the ``align_corners`` parameter, consider the 1-D case.
    You need to sample a grid of pixels whose values are computed using linear
    interpolation. This parameter controls how the grid is sampled. If the
    input grid is ``[0, Xin-1]`` (corresponding to an input size of ``Xin``),
    and if the output size is ``Xout``, then the grid points are sampled in
    the following manner:

    .. sourcecode:: python

        # If align_corners == True:
        spacing = (Xin - 1) / (Xout - 1)
        grid_point[i] = min(Xin - 1, max(0, i*spacing)), for i=0,1,...,Xout-1

        # If align_corners == False:
        spacing = Xin / Xout
        grid_point[i] = min(Xin - 1, max(0, i*spacing + 0.5*spacing - 0.5)),
        ...   for i=0,1,...,Xout-1

    For example:

    .. sourcecode:: python

        Xin = 2
        input_interval = [0,1]

    Grid points:

    .. sourcecode:: python

        [0., 0.1, 0.5, 0.9, 1.] (Xout = 5, align_corners=False)
        [0., 0.25, 0.5, 0.75, 1.] (Xout = 5, align_corners=True)
        [0., 0., 0.33, 0.67, 1., 1.] (Xout = 6, align_corners=False)
        [0., 0.2, 0.4, 0.6, 0.8, 1.] (Xout = 6, align_corners=True)

    Note the following similarities:

    * ``align_corners=False`` is the same as
      ``tf.raw_ops.ResizeBilinear(align_corners=False, half_pixel_centers=True)``.

    * ``align_corners=True`` is the same as
      ``tf.raw_ops.ResizeBilinear(align_corners=True, half_pixel_centers=False)``.

    Returns
    -------
    tensor<[\*D, H2, W2],T>
        * Tensor with same type as the input.
        * ``H2`` = floor(``H1`` * ``scale_factor_height``).
        * ``W2`` = floor(``W1`` * ``scale_factor_width``).

    Attributes
    ----------
    T: fp32
    T2 : fp32 or int32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        scale_factor_height=IntOrFloatInputType(const=True, optional=True),
        scale_factor_width=IntOrFloatInputType(const=True, optional=True),
        align_corners=BoolInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            scale_factor_height=1,
            scale_factor_width=1,
            align_corners=True,
        )

    def __init__(self, **kwargs):
        super(upsample_bilinear, self).__init__(**kwargs)

    def type_inference(self):
        if self.x.rank < 3:
            raise ValueError(
                'input to the "upsample_bilinear" op must have rank at least 3'
            )

        ret_shape = list(self.x.shape)
        ret_shape[-1] = np.floor(self.scale_factor_width.val *
                                 ret_shape[-1]) if not is_symbolic(
                                     ret_shape[-1]) else get_new_symbol()
        ret_shape[-2] = np.floor(self.scale_factor_height.val *
                                 ret_shape[-2]) if not is_symbolic(
                                     ret_shape[-2]) else get_new_symbol()
        return types.tensor(self.x.dtype, ret_shape)
Example #12
0
class affine(Operation):
    """
    Apply a linear affine transform to the input 2D image tensor. Value at the
    (x, y), i.e., (w, h) coordinate of the output, is computed by first computing
    the coordinates x’ and y’ with the following equation and then compute the
    value at the coordinate (x’,y’) in the input image using either bilinear or
    nearest neighbor interpolation. If the (x’, y’) point falls outside the input
    image, then padding information is used to compute the value.
    * x’ = a0 * x + a1 * y + a2
    * y’ = b0 * x + b1 * y + b2

    Parameters
    ----------
    x: tensor<[B, C, H1, W1], T>
        * Must be rank ``4``.
    transform_matrix: tensor<[D, 6], T>
        * Must be rank ``2``
        * D can be either B or 1.
            when D == B, for each batch, there is a separate transform matrix
            when D == 1, the same matrix is used for all input batches
            for each batch: [a0, a1, a2, b0, b1, b2]
    output_height: const<i32>
        * Target output height
    output_width: const<i32>
        * Target output width
    sampling_mode: const<str>
        * Allowed values: "bilinear"
    padding_mode: const<str>
        * Allowed values: "constant"
        * Note that following illustration is 1D case for brevity, the op only support 2D image input.
        * if ``padding_mode == "constant"``:
            the input image is assumed to be padded with the padding_value
            E.g., |1, 2, 3| -> |0, 0, 0, 1, 2, 3, 0, 0, 0|
    padding_value: const<T>
        * Currently non-zero values are not supported.
        * To be used only when ``padding_mode == "constant"``, ignored in other cases.
    coordinates_mode: const<str>
        * allowed values: "normalized_minus_one_to_one",
        * if ``coordinates_mode == "normalized_minus_one_to_one"``, in-image values are [-1, 1]
        * E.g., if ``coordinates_mode == "normalized_minus_one_to_one"``,
            the in range values are [-1, 1]. That is:
            * (-1, -1), i.e., (w=-1, h=-1), corresponds to the top-left pixel
            * (1, -1), i.e., (w=1, h=-1), corresponds to the top-right pixel
            * (-1, 1), i.e., (w=-1, h=1), corresponds to the bottom-left pixel
            * (1, 1), i.e., (w=1, h=1), corresponds to the bottom-right pixel
    align_corners: const<bool>
        * Currently align_corners=False is not supported.
        * To be used only when ``coordinates_mode != unnormalized``, ignored otherwise.
        * if ``align_corners == True``, the extrema coordinates are corresponding
            to the center of the first and last corner pixels.
        * if ``align_corners == False``, the extrema coordinates are corresponding
            to the edge of the first and last corner pixels.

    Returns
    -------
    tensor<[B, C, output_height, output_width], T>

    Attributes
    ----------
    T: fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        transform_matrix=TensorInputType(),
        output_height=IntInputType(const=True),
        output_width=IntInputType(const=True),
        sampling_mode=StringInputType(const=True),
        padding_mode=StringInputType(const=True),
        padding_value=FloatInputType(const=True),
        coordinates_mode=StringInputType(const=True),
        align_corners=BoolInputType(const=True),
    )

    def __init__(self, **kwargs):
        super(affine, self).__init__(**kwargs)

    def type_inference(self):
        if self.x.rank != 4:
            raise ValueError(
                'input "x" to the "affine" op must be a rank 4 tensor. '
                "Got rank {} tensor of shape {}".format(
                    self.x.rank, self.x.shape))
        if self.transform_matrix.rank != 2:
            raise ValueError(
                'input "transform_matrix" to the "affine" op must be a rank 2 tensor. '
                "Got rank {} tensor of shape {}".format(
                    self.transform_matrix.rank, self.transform_matrix.shape))
        if self.sampling_mode.val.lower() != "bilinear":
            raise NotImplementedError(
                'input "sampling_mode" to the "affine" not implemented. '
                'Got "{}"'.format(self.sampling_mode.val))
        if self.coordinates_mode.val.lower() != "normalized_minus_one_to_one":
            raise NotImplementedError(
                'input "coordinates_mode" to the "affine" not implemented. '
                'Got "{}"'.format(self.coordinates_mode.val))
        if self.padding_mode.val.lower(
        ) != "constant" or self.padding_value.val != 0.0:
            raise NotImplementedError(
                'input "padding_mode" to the "affine" not implemented. '
                'Got "{}" with "padding_value={}"'.format(
                    self.padding_mode.val, self.padding_value.val))

        input_shape = self.x.shape
        transform_matrix_shape = self.transform_matrix.shape
        if (not is_symbolic(transform_matrix_shape[-1])
                and transform_matrix_shape[-1] != 6):
            raise ValueError(
                'input "transform_matrix" to the "affine" op last dimension must be 6 '
                "[a0, a1, a2, b0, b1, b2], "
                "Got {} for last dimension".format(transform_matrix_shape[-1]))

        ret_shape = list(input_shape)
        ret_shape[2] = self.output_height.val
        ret_shape[3] = self.output_width.val
        return types.tensor(self.x.dtype, tuple(ret_shape))
Example #13
0
class resample(Operation):
    """
    Resample the input image tensor ``x``, at the ``coordinates``.
    input. Since the coordinates may not correspond to exact pixels in the
    input image, this would require "resampling". sampling_mode determines
    the algorithm used for resampling and computing the values.

    Parameters
    ----------
    x: tensor<[B, C, H1, W1], T>
        * Must be rank ``4``.
    coordinates: tensor<[B, H2, W2, 2], U>
        * Must be rank ``4``.
        * Coordinates are provided in the order (x, y), i.e., (w, h).
        * Value of each output location output[b, c, h, w] is calculated by
          sampling, from the input image x[b, c, :, :], the pixel at the (x, y)
          location corresponding to the length-2 vector: coordinates[b, h, w, :]
        * Coordinate (normalized or unnormalized) should be specified according
          to ``coordinates_mode``
    sampling_mode: const<str>
        * Allowed values: "bilinear" , "nearest"
    padding_mode: const<str>
        * Allowed values: "constant", "border", "reflection", "symmetric"
        * Note that following illustration is 1D case for brevity, the op only support 2D image input.
        * if ``padding_mode == "constant"``:
            the input image is assumed to be padded with the padding_value
            E.g., |1, 2, 3| -> |0, 0, 0, 1, 2, 3, 0, 0, 0|
        * if ``padding_mode == "border"``:
            the input image is assumed to be padded with the values replicated
            from the values at the edge. This is also referred to as the
            "clamped" or "replication" mode, since the padded values are
            clamped to the border values.
            E.g., |1, 2, 3| -> |1, 1, 1, 1, 2, 3, 3, 3, 3|
        * if ``padding_mode == "reflection"``:
            the border values are reflected, *not* including the values at the edge/border
            E.g., |1, 2, 3| -> |2, 3, 2, 1, 2, 3, 2, 1, 2|
        * if ``padding_mode == "symmetric"``:
            values are reflected, including the border/edge values
            E.g., |1, 2, 3| -> |3, 2, 1 , 1, 2, 3, 3, 2, 1|
    padding_value: const<T>
        * To be used only when ``padding_mode == "constant"``, ignored in other cases.
    coordinates_mode: const<str>
        * allowed values: "unnormalized", "normalized_minus_one_to_one",
                          "normalized_zero_to_one"
        * if ``coordinates_mode == "unnormalized"``, the coordinates input values
            are interpreted to be in range [0, W - 1] / [0, H - 1] corresponds to in-image point
        * if ``coordinates_mode == "normalized_minus_one_to_one"``, in-image values are [-1, 1]
        * if ``coordinates_mode == "normalized_zero_to_one"``, in-image values are [0, 1]
        * E.g., if ``coordinates_mode == "normalized_minus_one_to_one"``,
            the in range values are [-1, 1]. That is:
            * (-1, -1), i.e., (w=-1, h=-1), corresponds to the top-left pixel
            * (1, -1), i.e., (w=1, h=-1), corresponds to the top-right pixel
            * (-1, 1), i.e., (w=-1, h=1), corresponds to the bottom-left pixel
            * (1, 1), i.e., (w=1, h=1), corresponds to the bottom-right pixel
    align_corners: const<bool>
        * if ``align_corners == True``, the extrema coordinates are corresponding
            to the center of the first and last corner pixels.
        * if ``align_corners == False``, the extrema coordinates are corresponding
            to the edge of the first and last corner pixels.

    Returns
    -------
    tensor<[B, C, H2, W2], T>

    Attributes
    ----------
    T: fp32
    U: fp32, i32, i64
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        coordinates=TensorInputType(),
        sampling_mode=StringInputType(const=True),
        padding_mode=StringInputType(const=True),
        padding_value=FloatInputType(const=True),
        coordinates_mode=StringInputType(const=True),
        align_corners=BoolInputType(const=True),
    )

    def __init__(self, **kwargs):
        super(resample, self).__init__(**kwargs)

    def type_inference(self):
        if self.x.rank != 4:
            raise ValueError(
                'input "x" to the "resample" op must be a rank 4 tensor. '
                "Got rank {} tensor of shape {}".format(
                    self.x.rank, self.x.shape))
        if self.coordinates.rank != 4:
            raise ValueError(
                'input "coordinates" to the "resample" op must be a rank 4 tensor. '
                "Got rank {} tensor of shape {}".format(
                    self.coordinates.rank, self.coordinates.shape))

        input_shape = self.x.shape
        coord_shape = self.coordinates.shape
        if (not is_symbolic(input_shape[0]) and not is_symbolic(coord_shape[0])
                and input_shape[0] != coord_shape[0]):
            raise ValueError(
                'input "x" and "coordinates" to the "resample" must agree on '
                "dimension of batch size: {} vs. {}".format(
                    input_shape[0], coord_shape[0]))
        if not is_symbolic(coord_shape[-1]) and coord_shape[-1] != 2:
            raise ValueError(
                'input "coordinates" to the "resample" op last dimension must be 2. '
                "Got {} for last dimension".format(coord_shape[-1]))

        ret_shape = list(input_shape)
        ret_shape[2] = coord_shape[1]  # Output height
        ret_shape[3] = coord_shape[2]  # Output width
        return types.tensor(self.x.dtype, tuple(ret_shape))
Example #14
0
class matmul(Operation):
    """
    Perform N-D batch matrix multiplication with NumPy-style broadcasting
    based on the following rules:

    Rule 1. If both ``x, y`` are 1-D, return the scalar from the dot product.

    Rule 2. If both ``x, y`` are 2-D or higher, perform a broadcast on the batch dimensions
    (all dimensions except the last ``2``).

    For example:

    * ``x.shape == (10, 4, 3)``
    * ``y.shape == (5, 10, 3, 2)``
    * ``matmul(x, y).shape == (5, 10, 4, 2)``

    Conventional matrix multiplication is a special case where both ``x, y`` are
    exactly 2-D. For example:

    * ``x.shape == (4, 3)``
    * ``y.shape == (3, 2)``
    * ``matmul(x, y).shape == (4, 2)``

    If ``x`` is 1-D, and ``y`` is N-D where ``N >= 2``, ``x`` is first promoted to
    matrix ``xm`` by prepending a ``1`` to its dimension, and the resulting ``xm`` is
    broadcast to ``y`` following Rule 2 above. After this, remove the inserted dimension.
    For example:

    * ``x.shape == (4)``
    * ``y.shape == (10, 4, 3)``
    * ``xm.shape == (1, 4)``
    * ``matmul(xm, y).shape == (10, 1, 3)``
    * Removing the inserted dimension results in ``matmul(x, y).shape == (10, 3)``.
    * Note: ``xm`` and ``matmul(xm, y)`` are for illustration only.

    If ``x`` is N-D where ``N >= 2``, and ``y`` is 1-D, ``y`` is first promoted to
    matrix ``ym`` by appending a ``1`` to its dimension, and the resulting ``ym`` is
    broadcast to ``x`` following Rule 2 above. After this, remove the inserted dimension.
    For example:

    * ``x.shape == (10, 3, 4)``
    * ``y.shape == (4,)``
    * ``ym.shape == (4, 1)``
    * ``matmul(x, ym).shape == (10, 3, 1)``
    * Removing the inserted dimension results in ``matmul(x, y).shape == (10, 3)``.
    * Note: ``xm`` and ``matmul(xm, y)`` are for illustration only.

    Parameters
    ----------
    x: tensor<[\*,K1], T> (Required)
        * ``x`` must be 1-D or higher.
    y: tensor<[\*,K2], T> (Required)
        * ``y`` must be 1-D or higher.
    transpose_x: const bool (Optional)
        * Default to ``False``.
        * Use ``True`` to transpose the last two dimensions of ``x`` before multiplication.
          It has no effect when ``x`` is 1-D.
    transpose_y: const bool (Optional)
        * Default to ``False``.
        * Use ``True`` to transpose the last two dimensions of ``y`` before multiplication.
          It has no effect when ``y`` is 1-D.

    Returns
    -------
    tensor<\*, T>
        * Scalar or tensor output.

    Attributes
    ----------
    T: fp16, fp32, i32
    """
    input_spec = InputSpec(
        x=TensorInputType(),
        y=TensorInputType(),
        transpose_x=BoolInputType(const=True, optional=True),
        transpose_y=BoolInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            transpose_x=False,
            transpose_y=False,
        )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def type_inference(self):
        x_type = self.x.dtype
        x_shape = list(self.x.shape)
        y_shape = list(self.y.shape)
        x_rank = len(x_shape)

        if x_rank == 1 and self.transpose_x.val:
            msg = "Op {} (matmul): x is rank 1, but transpose_x is True, which is not allowed."
            raise ValueError(msg.format(self.name))

        if self.transpose_x.val:
            x_shape = list(x_shape)
            x_shape[-1], x_shape[-2] = x_shape[-2], x_shape[-1]
            x_shape = tuple(x_shape)
        if self.transpose_y.val:
            y_shape = list(y_shape)
            y_shape[-1], y_shape[-2] = y_shape[-2], y_shape[-1]
            y_shape = tuple(y_shape)
        if not (x_shape[-1] == y_shape[-2] or is_symbolic(x_shape[-1])
                or is_symbolic(y_shape[-2])):
            msg = "Op {} (matmul): x {}, y {} are not broadcastable"
            raise ValueError(msg.format(self.name, self.x.shape, self.y.shape))

        if x_rank == 1:
            # promote shape of x to rank 2
            x_shape = list((1, ) + tuple(x_shape))
        ret_shape = list(broadcast_shapes(x_shape[:-2], y_shape[:-2]))
        ret_shape += [x_shape[-2], y_shape[-1]]
        if x_rank == 1:
            # remove the first dimension of the returned shape
            return types.tensor(x_type, tuple(ret_shape[1:]))
        else:
            return types.tensor(x_type, tuple(ret_shape))

    @precondition(allow=VALUE)
    def value_inference(self):
        x = self.x.val
        if self.transpose_x.val:
            x = np.transpose(x)
        y = self.y.val
        if self.transpose_y.val:
            y = np.transpose(y)
        return np.matmul(x, y)
Example #15
0
class linear(Operation):
    """
    Perform  ``x * weight.T + bias`` where ``weight`` and ``bias`` are constant at
    compile time.

    Parameters
    ----------
    x: tensor<[\*D,D_in], T> (Required)
        * ``1 <= rank <= 3``.
        * ``0 <= rank(*D) <= 2``.
    weight: const tensor<[D_out,D_in], T> (Required)
    bias: const tensor<[D_out],T> (Optional)
        * Default to ``0``.

    Returns
    -------
    tensor<[\*D,D_out], T>
        * Same rank as the input ``x``.

    Attributes
    ----------
    T: fp16, fp32, i32
    """
    input_spec = InputSpec(
        x=TensorInputType(),
        weight=TensorInputType(const=True),
        bias=TensorInputType(const=True, optional=True),
    )

    def default_inputs(self):
        Dout = self.weight.shape[0]
        return DefaultInputs(bias=[0.] * Dout, )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def type_inference(self):
        x_type = self.x.dtype
        x_shape = self.x.shape
        weight_shape = self.weight.shape
        assert len(weight_shape) == 2
        if not (x_shape[-1] == weight_shape[-1] or is_symbolic(x_shape[-1])
                or is_symbolic(weight_shape[-1])):
            msg = "Op '{}' (linear op): Size of the last dimension of x, which is {}, " \
                  "does not match the last dimension of weights, which is {}"
            raise ValueError(
                msg.format(self.name, x_shape[-1], weight_shape[-1]))
        if self.bias is not None:
            assert len(self.bias.shape) == 1
            if len(self.bias.val) != weight_shape[-2]:
                msg = "Op '{}' (linear op): Size of the bias, which is {}, " \
                      "does not match the first dimension of weights, which is {}"
                raise ValueError(
                    msg.format(self.name, len(self.bias.val),
                               weight_shape[-2]))
        shape = list(x_shape)
        shape[-1] = weight_shape[0]
        return types.tensor(x_type, tuple(shape))

    @precondition(allow=VALUE)
    def value_inference(self):
        res = np.matmul(self.x.val, np.transpose(self.weight.val))
        if self.bias is not None:
            res += self.bias.val
        return res
Example #16
0
class l2_norm(Operation):
    """
    Apply L2 normalization to the n-dimensional input tensor. That is, divide the input
    tensor by the square root of the sum of squares of all elements of the input.

    .. math::
       x_i \\leftarrow \\dfrac{x_i}{\\sqrt{\\sum{x_i^2} + \\epsilon}}


    Parameters
    ----------
    x: tensor<[\*B, \*D], T> (Required)
        * Input tensor, ``rank(x) >= 3``.
        * ``*B`` refers to the leading dimensions.
        * ``*D`` refers to the spatial dimensions to be normalized. Must be rank 3: ``rank(*D) == 3``.
        * When ``rank(x) == 3``, in which ``rank(*B) == 0 and rank(*D) == 3``, the input is divided by
          the square root of the sum of squares of all elements.
        * For ranks greater than 3, in which ``rank(*B) >= 1 and rank(*D) == 3``,
          the leading dimensions \*B, starting from ``0`` to ``-4`` (inclusive),
          are all treated as batch. The L2 normalization are done batch-wise.
    epsilon: const fp32 (Optional)
        * Small constant to avoid division by ``0``.
        * Optional, defaults to ``1e-6``.

    Returns
    -------
    tensor<[\*B, \*D], T>
        * Same type and shape as the input tensor ``x``.

    Attributes
    ----------
    T: fp16, fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        epsilon=FloatInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(epsilon=1e-6, )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def type_inference(self):
        if self.x.rank < 3:
            msg = "Input rank of l2_norm must be at least 3. Got {}".format(
                self.x.rank)
            raise ValueError(msg)
        x_shape = self.x.shape
        return types.tensor(self.x.dtype, tuple(x_shape))

    @precondition(allow=VALUE)
    def value_inference(self):
        val = self.x.val
        eps = self.epsilon.val
        shape = self.x.shape
        rank = self.x.rank
        batch_dims = rank - 3
        if batch_dims == 0:
            square_sum = np.sum(val**2)
            output = val / np.power(square_sum + eps, 0.5)
        else:
            batch_dim_prod = np.prod(shape[:batch_dims])
            reshape_val = np.reshape(val, (batch_dim_prod, -1))
            square_sum = np.sum(
                reshape_val * reshape_val, axis=1, keepdims=True) + eps
            output = reshape_val / np.power(square_sum, 0.5)
            output = np.reshape(output, shape)
        return output
Example #17
0
class batch_norm(Operation):
    """
    Normalize input tensor ``x`` by ``mean`` and ``variance``, and optionally apply a
    scale ``gamma`` and an offset ``beta``:

    .. math::
       y_i = \\gamma_i \\dfrac{ (x_i - mean_i)}{\\sqrt{variance_i + epsilon}} + beta_i \\;,\\;i=1,....,C

    The ``mean``, ``variance``, ``gamma``, and ``beta``
    must be 1-D tensors whose lengths are equal to the second axis (the "depth"
    or "channel" dimension) of ``x``.

    Parameters
    ----------
    x: tensor<[n,C,*D], T> (Required)
        * ``3 <= rank <= 5``.
        * ``*D`` refers to the spatial dimensions, ``1 <= rank(*D) <= 3``.
        * ``n`` is the batch dimension.
    mean: const tensor<[C], T> (Required)
    variance: const tensor<[C], T> (Required)
    gamma: const tensor<[C], T> (Optional)
        * Optional scale applied to normalized tensor.
        * Default is all ones.
    beta: const tensor<[C], T> (Optional)
        * Optional offset applied to normalized tensor.
        * Default is all zeros.
    epsilon: const fp32 (Optional)
        * Default is ``1e-5``.

    Returns
    -------
    tensor<[n,C,*D], T>
        * Output tensor has the same shape and type as the input ``x``.

    Attributes
    ----------
    T: fp16, fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        mean=TensorInputType(const=True),
        variance=TensorInputType(const=True),
        gamma=TensorInputType(const=True, optional=True),
        beta=TensorInputType(const=True, optional=True),
        epsilon=FloatInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            gamma=None,
            beta=None,
            epsilon=1e-5,
        )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    def type_inference(self):
        x_shape = self.x.shape
        return types.tensor(self.x.dtype, tuple(x_shape))
Example #18
0
class layer_norm(Operation):
    """
    Apply layer normalization to the n-dimensional input tensor:

    .. math::
       out = gamma * (input - E[x]) / sqrt(Var[x] + epsilon) + beta


    Parameters
    ----------
    x: tensor<\*?, T> (Required)
        * Input tensor.

    axes: const<[K], i32> (Optional)
        * Dimensions to perform layer normalization.
        * Default is ``None`` (all dimensions).

    gamma: const tensor<\*?, T>, T> (Optional)
        * if provided, the shape must be be ``x.shape[axes]``. For instance, if
          input ``x`` with shape ``(3,4,5,6)`` and ``axes = [2,3]``, gamma must have
          shape ``(5,6)``.
        * Default is all ones.

    beta: const tensor<\*?, T>, T> (Optional)
        * Same shape as gamma.
        * Default is all zeros.

    epsilon: const fp32 (Optional)
        * Small constant to avoid division by ``0``.
        * Default is ``1e-5``.


    Returns
    -------
    tensor<\*?, T>:
     * Tensor with same shape and type as the input tensor ``x``.

    Attributes
    ----------
    T: fp16, fp32
    """

    input_spec = InputSpec(
        x=TensorInputType(),
        axes=IntTensorInputType(const=True, optional=True),
        gamma=TensorInputType(const=True, optional=True),
        beta=TensorInputType(const=True, optional=True),
        epsilon=FloatInputType(const=True, optional=True),
    )

    def default_inputs(self):
        return DefaultInputs(
            axes=range(self.x.rank),
            gamma=None,
            beta=None,
            epsilon=1e-5,
        )

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    @staticmethod
    def _is_compatible_shape(shapea, shapeb):
        if not len(shapea) == len(shapeb):
            return False
        for a, b in zip(shapea, shapeb):
            if any_symbolic([a, b]):
                continue
            if a != b:
                return False
        return True

    def type_inference(self):
        rank = self.x.rank

        # check valid axes
        positive_axes = [
            axis + rank if axis < 0 else axis for axis in self.axes.val
        ]
        if not all([axis >= 0 and axis < rank for axis in positive_axes]):
            raise ValueError("axes must in the range of [-x.rank, x.rank-1].")

        # check shape of gamma and beta
        normalized_shape = [
            self.x.shape[i] for i in range(rank) if i in positive_axes
        ]
        if self.gamma is not None and not layer_norm._is_compatible_shape(
                list(self.gamma.shape), normalized_shape):
            raise ValueError(
                "Expect shape {} for gamma, but get shape {} instead".format(
                    normalized_shape, self.gamma.shape))

        if self.beta is not None and not layer_norm._is_compatible_shape(
                list(self.gamma.shape), normalized_shape):
            raise ValueError(
                "Expect shape {} for beta, but get shape {} instead".format(
                    normalized_shape, self.beta.shape))

        x_shape = self.x.shape
        return types.tensor(self.x.dtype, tuple(x_shape))

    @precondition(allow=VALUE)
    def value_inference(self):
        def np_layer_norm(x, axes, gamma, beta, epsilon=1e-5):
            rank = len(x.shape)
            axes = [axis + rank if axis < 0 else axis for axis in axes]
            normalized_shape = [
                x.shape[i] if i in axes else 1 for i in range(rank)
            ]
            gamma = np.ones(
                shape=normalized_shape) if gamma is None else np.reshape(
                    gamma, normalized_shape)
            beta = np.zeros(
                shape=normalized_shape) if beta is None else np.reshape(
                    beta, normalized_shape)
            num = x - np.mean(x, axis=tuple(axes), keepdims=True)
            dem = np.sqrt(
                np.sum(np.square(num), axis=tuple(axes), keepdims=True) /
                np.prod(normalized_shape) + epsilon)
            return num / dem * gamma + beta

        _axes = self.x.shape if self.axes is None else self.axes.val
        _gamma = None if self.gamma is None else self.gamma.val
        _beta = None if self.beta is None else self.beta.val
        return np_layer_norm(self.x.val, _axes, _gamma, _beta,
                             self.epsilon.val)