Example #1
0
        out_img.save(os.path.join(output_folder, im_path.replace(".jpg", ".png")))
        elapsed_time = (time.time() - start_time)
        eta = int((total - count) * (elapsed_time/count))
        print "processed %s\t%d/%d\teta: %s" % (im_path, count, total, str(datetime.timedelta(seconds=eta)))

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Parameters")
    parser.add_argument("--target", default= "initweb",
                        help="The target image folder. \"initweb\" is for web images with init-sec. "
                             "\"webweb\" is for web images with web-sec. "
                             "\"initvoc\" is for voc images with init-sec. default: initweb")
    parser.add_argument("--gpu", default=0, type=int,
                        help="Device indices. default: 0")
    args = parser.parse_args()

    misc.my_mkdir(config.CACHE_PATH)

    if args.target == "initweb":
        image_folder = config.WEB_IMAGE_FOLDER
        output_folder = os.path.join(config.CACHE_PATH, config.WEB_MASK_FOLDER_INITSEC)
        image_list = []
        for im_path in os.listdir(image_folder):
            if im_path.endswith(".jpg") and not im_path.startswith("."):
                image_list.append(im_path)

        model_name = "SEC_%s" % config.BASE_NET
        exec ("import cores.symbols." + model_name + " as net_symbol")
        weight_file = os.path.join(config.SNAPSHOT_FOLDER, "%s_init-1.params"%(model_name))
        infer_use_SEC(image_folder=image_folder, output_folder=output_folder, image_list=image_list,
                      net_symbol=net_symbol, weight_file=weight_file, gpu=args.gpu, use_crf=False)
    elif args.target == "webweb":
Example #2
0
def infer_use_SEC(image_folder, output_folder, image_list, net_symbol, weight_file, multi_label_file=None,
                  gpu=0, use_crf=False):
    misc.my_mkdir(output_folder)
    cmap = voc_cmap.get_cmap()

    os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"]="0"
    mean_rgb = mx.nd.array(config.MEAN_RGB, ctx=mx.cpu()).reshape((1, 1, 3))

    crf_filter = CRF(scale_factor=1.0)

    if multi_label_file is not None:
        with open(multi_label_file, 'rb') as f:
            data_dict = pickle.load(f)

    seg_net = net_symbol.create_infer(config.CLASS_NUM, config.WORKSPACE)
    arg_dict, aux_dict, _ = misc.load_checkpoint(weight_file)
    mod = mx.mod.Module(seg_net, data_names=["data"], label_names=[], context=mx.gpu(gpu))
    mod.bind(data_shapes=[("data", (1, 3, config.INPUT_SIZE_SEC, config.INPUT_SIZE_SEC))],
             for_training=False, grad_req="null")

    initializer = mx.init.Normal()
    initializer.set_verbosity(True)
    mod.init_params(initializer=initializer, arg_params=arg_dict, aux_params=aux_dict, allow_missing=True)

    file_list = image_list
    random.shuffle(file_list)
    total = len(file_list)
    count = 0
    start_time = time.time()
    for im_path in file_list:
        count += 1
        if os.path.exists(os.path.join(output_folder, im_path.replace(".jpg", ".png"))):
            print "skipped %s because it already exists." % im_path
            continue

        #get mask
        buf = mx.nd.array(
            np.frombuffer(open(os.path.join(image_folder, im_path), 'rb').read(), dtype=np.uint8),
            dtype=np.uint8, ctx=mx.cpu())
        im = mx.image.imdecode(buf)
        h, w = im.shape[:2]
        resized_im = mx.image.imresize(im, config.INPUT_SIZE_SEC, config.INPUT_SIZE_SEC, interp=1)
        resized_im = resized_im.astype(np.float32)
        resized_im -= mean_rgb
        resized_im = mx.nd.transpose(resized_im, [2, 0, 1])
        resized_im = mx.nd.expand_dims(resized_im, 0)

        mod.forward(mx.io.DataBatch(data=[resized_im]))

        score = mx.nd.transpose(mod.get_outputs()[0].copyto(mx.cpu()), [0, 2, 3, 1])
        score = mx.nd.reshape(score, (score.shape[1], score.shape[2], score.shape[3]))
        up_score = mx.nd.transpose(mx.image.imresize(score, w, h, interp=1), [2, 0, 1])

        if multi_label_file is not None:
            tmp_label = data_dict[im_path.replace(".jpg", "")]
            image_level_labels = np.zeros((config.CLASS_NUM - 1))
            image_level_labels[tmp_label] = 1
            image_level_labels = np.insert(image_level_labels, 0, 1)
            image_level_labels = image_level_labels.reshape((config.CLASS_NUM, 1, 1))
            image_level_labels = mx.nd.array(image_level_labels, ctx=mx.cpu())

            up_score *= image_level_labels

        up_score = up_score.asnumpy()
        up_score[up_score < 0.00001] = 0.00001

        # #renormalize
        if use_crf:
            mask = np.argmax(crf_filter.inference(im.asnumpy(), np.log(up_score)), axis=0)
        else:
            mask = np.argmax(up_score, axis=0)

        out_img = np.uint8(mask)
        out_img = Image.fromarray(out_img)
        out_img.putpalette(cmap)
        out_img.save(os.path.join(output_folder, im_path.replace(".jpg", ".png")))
        elapsed_time = (time.time() - start_time)
        eta = int((total - count) * (elapsed_time/count))
        print "processed %s\t%d/%d\teta: %s" % (im_path, count, total, str(datetime.timedelta(seconds=eta)))
Example #3
0
def get_voc_mask(image_folder,
                 output_folder,
                 net_symbol,
                 class_num,
                 flist_path,
                 epoch,
                 model_prefix,
                 ctx,
                 workspace,
                 max_dim,
                 rgb_mean,
                 scale_list,
                 multi_label_file=None,
                 min_pixel=None,
                 sec_mask_folder=None):
    misc.my_mkdir(output_folder)
    cmap = voc_cmap.get_cmap()

    os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"

    seg_net = net_symbol.create_infer(class_num, workspace)
    arg_dict, aux_dict, _ = misc.load_checkpoint(model_prefix, epoch)

    if multi_label_file is not None:
        with open(multi_label_file, 'rb') as f:
            data_dict = pickle.load(f)

    mod = mx.mod.Module(seg_net, label_names=[], context=ctx)
    mod.bind(data_shapes=[("data", (1, 3, max_dim, max_dim))],
             for_training=False,
             grad_req="null")
    initializer = mx.init.Normal()
    initializer.set_verbosity(True)
    mod.init_params(initializer=initializer,
                    arg_params=arg_dict,
                    aux_params=aux_dict,
                    allow_missing=True)

    data_producer = InferenceDataProducer(im_root=image_folder,
                                          mask_root="",
                                          flist_path=flist_path,
                                          rgb_mean=rgb_mean,
                                          scale_list=scale_list)

    nbatch = 0

    while True:
        data = data_producer.get_data()
        if data is None:
            break
        im_list = data[0]

        label = data[1].squeeze()
        file_name = data[2]
        final_scoremaps = mx.nd.zeros(
            (class_num, label.shape[0], label.shape[1]))

        for im in im_list:
            mod.reshape(data_shapes=[("data", im.shape)])
            mod.forward(mx.io.DataBatch(data=[mx.nd.array(im)]))

            score = mx.nd.transpose(mod.get_outputs()[0].copyto(mx.cpu()),
                                    [0, 2, 3, 1])
            score = mx.nd.reshape(
                score, (score.shape[1], score.shape[2], score.shape[3]))
            up_score = mx.nd.transpose(
                mx.image.imresize(score,
                                  label.shape[1],
                                  label.shape[0],
                                  interp=1), [2, 0, 1])
            final_scoremaps += up_score

        final_scoremaps = final_scoremaps.asnumpy()

        if multi_label_file is not None:
            tmp_label = data_dict[file_name]
            image_level_labels = np.zeros((class_num - 1))
            image_level_labels[tmp_label] = 1
            image_level_labels = np.insert(image_level_labels, 0, 1)
            image_level_labels = image_level_labels.reshape((class_num, 1, 1))
            final_scoremaps *= image_level_labels

        pred_label = final_scoremaps.argmax(0)
        if sec_mask_folder is not None:
            sec_mask = Image.open(
                os.path.join(config.CACHE_PATH, config.VOC_MASK_FOLDER_INITSEC,
                             file_name + ".png"))
            sec_mask = np.array(sec_mask)
            assert multi_label_file is not None
            image_label = data_dict[file_name] + 1
            fg_index = pred_label > 0

            for l in image_label:
                if np.sum(pred_label == l) <= min_pixel:
                    pred_label[sec_mask == l] = l
                inter_index = ((sec_mask == l) & fg_index)
                pred_label[inter_index] = l

        out_img = np.uint8(pred_label)
        out_img = Image.fromarray(out_img)
        out_img.putpalette(cmap)
        out_img.save(os.path.join(output_folder, file_name + ".png"))

        nbatch += 1
        if nbatch % 10 == 0:
            print "processed %dth batch" % nbatch
Example #4
0
import os
from cores.config import conf
import scipy.io as sio
import numpy as np
import cores.utils.misc as misc
import shutil
from PIL import Image
import cPickle as pickle

#convert SBD data and VOC12 data to our format.
if __name__ == "__main__":

    misc.my_mkdir(conf.DATASET_PATH)
    misc.my_mkdir(os.path.join(conf.DATASET_PATH, conf.VOC_TRAIN_IM_FOLDER))
    misc.my_mkdir(os.path.join(conf.DATASET_PATH, conf.VOC_VAL_IM_FOLDER))
    misc.my_mkdir(os.path.join(conf.DATASET_PATH, conf.VOC_VAL_MASK_FOLDER))

    # process SBD
    sbd_list = []
    with open(os.path.join(conf.SBD_PATH, "train.txt")) as f:
        sbd_list += [i.strip() for i in f.readlines()]
    with open(os.path.join(conf.SBD_PATH, "val.txt")) as f:
        sbd_list += [i.strip() for i in f.readlines()]

    with open(
            os.path.join(conf.VOCDEVKIT_PATH, "ImageSets", "Segmentation",
                         "train.txt")) as f:
        voc_train_list = [i.strip() for i in f.readlines()]
    with open(
            os.path.join(conf.VOCDEVKIT_PATH, "ImageSets", "Segmentation",
                         "val.txt")) as f:
Example #5
0
import argparse
import mxnet as mx
import cores.utils.misc as misc
import os
from cores.config import conf
import logging
from cores.train_multi_wrapper import train_multi_wrapper
from cores.generate_fg_cues import generate_fg_cues

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Training parameters")
    parser.add_argument("--gpus", default="0", help="Device indices.")

    args = parser.parse_args()
    os.environ["MXNET_CPU_WORKER_NTHREADS"] = str(conf.CPU_WORKER_NUM)
    misc.my_mkdir(conf.LOG_FOLDER)
    misc.my_mkdir(conf.SNAPSHOT_FOLDER)
    misc.my_mkdir(conf.CACHE_PATH)

    log_file_name = os.path.join(conf.LOG_FOLDER, "train_fg_cue_net.log")
    if os.path.exists(log_file_name):
        os.remove(log_file_name)
    logging.basicConfig(filename=log_file_name, level=logging.INFO)
    console = logging.StreamHandler()
    logging.getLogger().addHandler(console)

    im_folder = os.path.join(conf.DATASET_PATH, conf.VOC_TRAIN_IM_FOLDER)
    multi_label_file = os.path.join(conf.DATASET_PATH,
                                    conf.VOC_TRAIN_MULTI_FILE)
    cue_file = os.path.join(conf.CACHE_PATH, conf.FG_CUE_FILE)
    snapshot_prefix = os.path.join(conf.SNAPSHOT_FOLDER, "fg_cue_net")
Example #6
0
import cores.utils.misc as misc
import numpy as np
import cores.utils.callbacks as callbacks

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Training parameters")
    parser.add_argument("--gpus", default="0",
                        help="Device indices.")
    parser.add_argument("--epoch", default=0, type=int,
                        help="Starting epoch.")
    parser.add_argument("--lr", default=-1, type=float,
                        help="Learning rate.")


    args = parser.parse_args()
    misc.my_mkdir(conf.SNAPSHOT_FOLDER)
    os.environ["MXNET_CPU_WORKER_NTHREADS"] = str(conf.CPU_WORKER_NUM)

    ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')]
    log_file_name = os.path.join(conf.LOG_FOLDER, "train_SEC_model.log")
    if os.path.exists(log_file_name) and args.epoch==0:
        os.remove(log_file_name)
    logging.basicConfig(filename=log_file_name, level=logging.INFO)
    console = logging.StreamHandler()
    logging.getLogger().addHandler(console)

    bg_cue_file = os.path.join(conf.CACHE_PATH, conf.BG_CUE_FILE)
    fg_cue_file = os.path.join(conf.CACHE_PATH, conf.FG_CUE_FILE)
    multi_lable_file = os.path.join(conf.DATASET_PATH, conf.VOC_TRAIN_MULTI_FILE)
    output_cue_file = os.path.join(conf.CACHE_PATH, conf.CUE_FILE_INITSEC)
Example #7
0
            mask[new_bottom:, :] = 0
            mask[:, 0:new_left] = 0
            mask[:, new_right:] = 0

            cv2.grabCut(im[:, :, ::-1], mask, None, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_MASK)
            mask[mask == 2] = 0
            mask[mask > 0] = 1

            final_mask += mask
            val_count += 1
            if val_count >= max_sample:
                print "enough samples, break."
                break
        if val_count < max_sample:
            print "bad result"
        else:
            output_im = Image.fromarray(final_mask)
            output_im.save(os.path.join(output_folder, l_name))
            print "processed %s" % f


if __name__ == "__main__":
    mask_folder = os.path.join(config.CACHE_PATH, config.WEB_MASK_FOLDER_WEBSEC)
    tmp_output_folder = os.path.join(config.CACHE_PATH, config.TMP_GC_RESULTS_FOLDER)
    label_file = os.path.join(config.CACHE_PATH, config.WEB_IMAGE_LABEL_FILE)
    misc.my_mkdir(tmp_output_folder)
    #refine masks using grabcut
    gc_refine(im_folder=config.WEB_IMAGE_FOLDER, mask_folder=mask_folder,output_folder=tmp_output_folder,
              label_file=label_file, max_sample=config.MAX_SAMPLE_GC, max_trial=config.MAX_TRIAL_GC,
              offset=config.OFFSET_GC, min_dim_th=config.MIN_DIM_TH_GC, margin=config.MARGIN_GC)
Example #8
0
            f.write("%s\n" % i)
    print "done!"


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Training parameters")
    parser.add_argument("--nogc",
                        help="Do not include Grabcut refinement results.",
                        action="store_true")
    args = parser.parse_args()

    mask_folder = os.path.join(config.CACHE_PATH,
                               config.WEB_MASK_FOLDER_WEBSEC)
    final_output_folder = os.path.join(config.CACHE_PATH,
                                       config.FINAL_WEB_MASK_FOLDER)
    misc.my_mkdir(final_output_folder)
    flist_path = os.path.join(config.CACHE_PATH, config.WEB_IMAGE_FLIST)

    if args.nogc:
        #no refinement. Simply copy the files and create a list.
        count = 0
        total = len(os.listdir(mask_folder))
        flist = []
        for i in os.listdir(mask_folder):
            if i.endswith(".png") and not i.startswith("."):
                flist.append(i.replace(".png", ""))
                shutil.copyfile(os.path.join(mask_folder, i),
                                os.path.join(final_output_folder, i))
                count += 1
                print "processed %s\t%d/%d" % (i, count, total)
        with open(flist_path, "w") as f:
Example #9
0
    parser.add_argument("--gpu", default="0",
                        help="Device index.")
    parser.add_argument("--epoch", default=0, type=int,
                        help="snapshot name for evaluation")
    parser.add_argument("--savemask", help="whether save the prediction masks.",
                        action="store_true")
    parser.add_argument("--savescoremap", help="whether save the prediction scoremaps.",
                        action="store_true")
    parser.add_argument("--model", default="web",
                        help="evaluate the web model or final model. either \"web\" or \"final\"")
    parser.add_argument("--crf", help="whether use crf for post processing.",
                        action="store_true")
    args = parser.parse_args()


    misc.my_mkdir(config.OUTPUT_FOLDER)

    log_file_name = os.path.join(config.LOG_FOLDER, "eval_model.log")
    logging.basicConfig(filename=log_file_name, level=logging.INFO)
    console = logging.StreamHandler()
    logging.getLogger().addHandler(console)

    assert args.model == "web" or args.model == "final"
    if args.model == "web":
        model_name = "web_fcn_%s" % config.BASE_NET
    elif args.model == "final":
        model_name = "final_fcn_%s" % config.BASE_NET

    if args.epoch == 0:
        while True:
            untested_list = get_untested_list(config.SNAPSHOT_FOLDER, config.OUTPUT_FOLDER, model_name=model_name)
Example #10
0
def main():
    conf.epoch = args.epoch
    conf.gpu = args.gpu
    conf.savescoremap = args.savescoremap
    conf.savemask = args.savemask
    conf.crf = args.crf
    conf.flip = args.flip
    logging.info(conf)

    crf = CRF(pos_xy_std=conf.CRF_POS_XY_STD, pos_w=conf.CRF_POS_W, bi_xy_std=conf.CRF_BI_XY_STD,
              bi_rgb_std=conf.CRF_BI_RGB_STD, bi_w=conf.CRF_BI_W)

    os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"]="0"
    os.environ["MXNET_CPU_WORKER_NTHREADS"] = str(conf.CPU_WORKER_NUM)

    model_name = "SEC_%s" % conf.BASE_NET
    exec ("import cores.symbols." + model_name + " as net")
    epoch_str = str(args.epoch)
    output_path = os.path.join(conf.OUTPUT_FOLDER, model_name + "_epoch" + epoch_str)

    misc.my_mkdir(output_path)
    if conf.savescoremap:
        misc.my_mkdir(os.path.join(output_path, "scoremaps"))
    if conf.savemask:
        misc.my_mkdir(os.path.join(output_path, "masks"))


    ctx = mx.gpu(int(args.gpu))
    cmap = get_cmap()

    seg_net = net.create_infer(conf.CLASS_NUM, conf.WORKSPACE)
    seg_net_prefix = os.path.join(conf.SNAPSHOT_FOLDER, model_name)
    arg_dict, aux_dict, _ = misc.load_checkpoint(seg_net_prefix, args.epoch)


    mod = mx.mod.Module(seg_net, data_names=["data"], label_names=[], context=ctx)
    mod.bind(data_shapes=[("data", (1, 3, conf.INPUT_SIZE_SEC, conf.INPUT_SIZE_SEC))],
             for_training=False, grad_req="null")
    initializer = mx.init.Normal()
    initializer.set_verbosity(True)
    mod.init_params(initializer=initializer, arg_params=arg_dict, aux_params=aux_dict, allow_missing=True)

    data_producer = InferenceDataProducer(
        im_root=os.path.join(conf.DATASET_PATH, conf.VOC_VAL_IM_FOLDER),
        mask_root=os.path.join(conf.DATASET_PATH, conf.VOC_VAL_MASK_FOLDER),
        flist_path=os.path.join(conf.DATASET_PATH, conf.VOC_VAL_LIST),
        rgb_mean=conf.MEAN_RGB,
        input_size=conf.INPUT_SIZE_SEC)

    nbatch = 0
    eval_metrics = [metrics.IOU(conf.CLASS_NUM, get_classnames())]
    logging.info("In evaluation...")

    while True:
        data = data_producer.get_data()
        if data is None:
            break
        im = data[0]

        label = data[1].squeeze()
        im_name = data[2]
        ori_im = data[3]


        mod.forward(mx.io.DataBatch(data=[im]))
        score = mx.nd.transpose(mod.get_outputs()[0].copyto(mx.cpu()), [0, 2, 3, 1])
        score = mx.nd.reshape(score, (score.shape[1], score.shape[2], score.shape[3]))
        up_score = mx.nd.transpose(mx.image.imresize(score, label.shape[1], label.shape[0], interp=1), [2, 0, 1])

        if conf.flip:
            flip_im = im[:, :, :, ::-1]
            mod.forward(mx.io.DataBatch(data=[flip_im]))
            flip_score = mx.nd.transpose(mod.get_outputs()[0].copyto(mx.cpu()), [0, 2, 3, 1])
            flip_score = mx.nd.reshape(flip_score, (flip_score.shape[1], flip_score.shape[2], flip_score.shape[3]))
            flip_up_score = mx.nd.transpose(mx.image.imresize(flip_score, label.shape[1], label.shape[0], interp=1), [2, 0, 1])
            up_score += mx.nd.flip(flip_up_score, axis=2)
            up_score /= 2



        if conf.crf:
            final_scoremaps = mx.nd.log(up_score).asnumpy()
            final_scoremaps = crf.inference(ori_im.asnumpy(), final_scoremaps)
        else:
            final_scoremaps = up_score.asnumpy()
        pred_label = final_scoremaps.argmax(0)

        for eval in eval_metrics:
            eval.update(label, pred_label)


        if conf.savemask:
            out_img = np.uint8(pred_label)
            out_img = Image.fromarray(out_img)
            out_img.putpalette(cmap)
            output_name = im_name[:im_name.rfind(".")]
            output_name += ".png"
            out_img.save(os.path.join(output_path, "masks", output_name))
        if conf.savescoremap:
            output_name = im_name[:im_name.rfind(".")]
            np.save(os.path.join(output_path, "scoremaps", output_name), final_scoremaps)

        nbatch += 1
        if nbatch % 10 == 0:
            print "processed %dth batch" % nbatch

    logging.info("Epoch [%d]: " % args.epoch)
    for m in eval_metrics:
        logging.info("[overall] [%s: %.4f]" % (m.get()[0], m.get()[1]))
        if m.get_class_values() is not None:
            scores = "[perclass] ["
            for v in m.get_class_values():
                scores += "%s: %.4f\t" % (v[0], v[1])
            scores += "]"
            logging.info(scores)
Example #11
0
    

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Training parameters")
    parser.add_argument("--gpu", default="0",
                        help="Device index.")
    parser.add_argument("--epoch", default=0, type=int,
                        help="snapshot name for evaluation")
    parser.add_argument("--savemask", help="whether save the prediction masks.",
                        action="store_true")
    parser.add_argument("--savescoremap", help="whether save the prediction scoremaps.",
                        action="store_true")
    parser.add_argument("--crf", help="whether use crf for post processing.",
                        action="store_true")
    parser.add_argument("--flip", help="whether use flip.",
                        action="store_true")
    misc.my_mkdir(conf.OUTPUT_FOLDER)
    misc.my_mkdir(conf.LOG_FOLDER)
    args = parser.parse_args()
    logging.basicConfig(filename=os.path.join(conf.LOG_FOLDER, "evaluation_log.log"), level=logging.INFO)
    console = logging.StreamHandler()
    logging.getLogger().addHandler(console)
    main()