class TestTextModule(unittest.TestCase): def setUp(self): self.tokens = ['a', 'b', 'c', 'd', 'e', 'f'] corpus = ['a b c', 'b c d d', 'c b e c f'] ids = ['u1', 'u2', 'u3'] # frequency ranking: c > b > d > a > e > f self.module = TextModule(corpus=corpus, ids=ids, max_vocab=6) self.module.build({'u1': 0, 'u2': 1, 'u3': 2}) self.token_ids = (self.module.vocab.tok2idx[tok] for tok in self.tokens) def test_init(self): self.assertCountEqual(self.module.vocab.idx2tok, SPECIAL_TOKENS + self.tokens) def test_build(self): TextModule().build() TextModule(corpus=['abc']).build() TextModule(corpus=['abc']).build({'b': 0}) TextModule(corpus=['abc'], ids=['a']).build({'b': 0}) def test_sequences(self): (a, b, c, d, e, f) = self.token_ids self.assertListEqual(self.module.sequences, [[a, b, c], [b, c, d, d], [c, b, e, c, f]]) def test_batch_seq(self): (a, b, c, d, e, f) = self.token_ids batch_seqs = self.module.batch_seq([2, 1]) self.assertEqual((2, 5), batch_seqs.shape) npt.assert_array_equal(batch_seqs, np.asarray([[c, b, e, c, f], [b, c, d, d, 0]])) batch_seqs = self.module.batch_seq([0, 2], max_length=4) self.assertEqual((2, 4), batch_seqs.shape) npt.assert_array_equal(batch_seqs, np.asarray([[a, b, c, 0], [c, b, e, c]])) self.module.sequences = None try: self.module.batch_seq([0]) except ValueError: assert True def test_count_matrix(self): (a, b, c, d, e, f) = self.token_ids shift = len(SPECIAL_TOKENS) expected_counts = np.zeros_like(self.module.count_matrix.A) expected_counts[0, a - shift] = 1 expected_counts[0, b - shift] = 1 expected_counts[0, c - shift] = 1 expected_counts[1, b - shift] = 1 expected_counts[1, c - shift] = 1 expected_counts[1, d - shift] = 2 expected_counts[2, b - shift] = 1 expected_counts[2, c - shift] = 2 expected_counts[2, e - shift] = 1 expected_counts[2, f - shift] = 1 npt.assert_array_equal(self.module.count_matrix.A, expected_counts) def test_batch_bow(self): (a, b, c, d, e, f) = self.token_ids shift = len(SPECIAL_TOKENS) batch_bows = self.module.batch_bow([2, 1]) self.assertEqual((2, self.module.max_vocab), batch_bows.shape) expected_bows = np.zeros_like(batch_bows) expected_bows[0, b - shift] = 1 expected_bows[0, c - shift] = 2 expected_bows[0, e - shift] = 1 expected_bows[0, f - shift] = 1 expected_bows[1, b - shift] = 1 expected_bows[1, c - shift] = 1 expected_bows[1, d - shift] = 2 npt.assert_array_equal(batch_bows, expected_bows) batch_bows = self.module.batch_bow([0, 2], binary=True, keep_sparse=True) self.assertEqual((2, 6), batch_bows.shape) expected_bows = np.zeros_like(batch_bows.A) expected_bows[0, np.asarray([a, b, c]) - shift] = 1 expected_bows[1, np.asarray([b, c, e, f]) - shift] = 1 npt.assert_array_equal(batch_bows.A, expected_bows) self.module.count_matrix = None try: self.module.batch_bow([0]) except ValueError: assert True def test_batch_bow_fallback(self): module = TextModule(features=np.asarray([[3, 2, 1], [4, 5, 6]]), ids=['a', 'b']) module.build() npt.assert_array_equal(np.asarray([[3, 2, 1]]), module.batch_bow(batch_ids=[0]))
def test_batch_bow_fallback(self): module = TextModule(features=np.asarray([[3, 2, 1], [4, 5, 6]]), ids=['a', 'b']) module.build() npt.assert_array_equal(np.asarray([[3, 2, 1]]), module.batch_bow(batch_ids=[0]))
def test_init(): md = TextModule() md.build(global_id_map=None)