def test_ndcg(): ndcg = NDCG() assert ndcg.type == 'ranking' assert ndcg.name == 'NDCG@-1' assert 1 == ndcg.compute(np.asarray([1]), np.asarray([0])) ground_truth = np.asarray([1, 0, 1]) # [1, 3] rec_list = np.asarray([0, 2, 1]) # [1, 3, 2] assert 1 == ndcg.compute(ground_truth, rec_list) ndcg_2 = NDCG(k=2) assert ndcg_2.k == 2 ground_truth = np.asarray([0, 0, 1]) # [3] rec_list = np.asarray([1, 2, 0]) # [2, 3, 1] assert 0.63 == float('{:.2f}'.format(ndcg_2.compute( ground_truth, rec_list)))
def test_ndcg(self): ndcg = NDCG() self.assertEqual(ndcg.type, "ranking") self.assertEqual(ndcg.name, "NDCG@-1") self.assertEqual(1, ndcg.compute(np.asarray([1]), np.asarray([0]))) ground_truth = np.asarray([1, 0, 1]) # [1, 3] rec_list = np.asarray([0, 2, 1]) # [1, 3, 2] self.assertEqual(1, ndcg.compute(ground_truth, rec_list)) ndcg_2 = NDCG(k=2) self.assertEqual(ndcg_2.k, 2) ground_truth = np.asarray([0, 0, 1]) # [3] rec_list = np.asarray([1, 2, 0]) # [2, 3, 1] self.assertEqual( 0.63, float("{:.2f}".format(ndcg_2.compute(ground_truth, rec_list))))
lambda_d=0.1, min_user_freq=2, max_iter=1000, trainable=True, verbose=True, init_params=params, ) n_items = eval_method.train_set.num_items k_1 = int(n_items / 100) k_5 = int(n_items * 5 / 100) k_10 = int(n_items * 10 / 100) Experiment( eval_method, models=[model], metrics=[ AUC(), Recall(k=k_1), Recall(k=k_5), Recall(k=k_10), NDCG(k=k_1), NDCG(k=k_5), NDCG(k=k_10), ], show_validation=True, save_dir="dist/toy/result", verbose=True, ).run()
rs = RatioSplit(data=ml_100k, test_size=0.2, rating_threshold=4.0, seed=123) # initialize models, here we are comparing: Biased MF, PMF, and BPR models = [ MF(k=10, max_iter=25, learning_rate=0.01, lambda_reg=0.02, use_bias=True, seed=123), PMF(k=10, max_iter=100, learning_rate=0.001, lambda_reg=0.001, seed=123), BPR(k=10, max_iter=200, learning_rate=0.001, lambda_reg=0.01, seed=123), ] # define metrics to evaluate the models metrics = [ MAE(), RMSE(), Precision(k=10), Recall(k=10), NDCG(k=10), AUC(), MAP() ] # put it together in an experiment, voilĂ ! cornac.Experiment(eval_method=rs, models=models, metrics=metrics, user_based=True).run()
eval_method = RatioSplit(data, test_size=0.2, rating_threshold=1.0, sentiment=md, exclude_unknowns=True, verbose=True, seed=123) mter = MTER(n_user_factors=15, n_item_factors=15, n_aspect_factors=12, n_opinion_factors=12, n_bpr_samples=1000, n_element_samples=200, lambda_reg=0.1, lambda_bpr=5, n_epochs=2000, lr=0.1, verbose=True, seed=123) exp = Experiment( eval_method=eval_method, models=[mter], metrics=[RMSE(), NDCG(k=10), NDCG(k=20), NDCG(k=50), NDCG(k=100)]) exp.run()
from cornac.metrics import MAE, RMSE, Precision, Recall, NDCG, AUC, MAP from cornac.eval_methods import PropensityStratifiedEvaluation from cornac.experiment import Experiment # Load the MovieLens 1M dataset ml_dataset = cornac.datasets.movielens.load_feedback(variant="1M") # Instantiate an instance of PropensityStratifiedEvaluation method stra_eval_method = PropensityStratifiedEvaluation( data=ml_dataset, n_strata=2, # number of strata rating_threshold=4.0, verbose=True) # define the examined models models = [ WMF(k=10, seed=123), BPR(k=10, seed=123), ] # define the metrics metrics = [MAE(), RMSE(), Precision(k=10), Recall(k=10), NDCG(), AUC(), MAP()] # run an experiment exp_stra = Experiment(eval_method=stra_eval_method, models=models, metrics=metrics) exp_stra.run()