pyr_blender=pyrMask.pyrMask(frame,True,nlevs,inference_lev) old_frame[:,:,:]=get_new_frame(frame,inference_lev) started=False tle=0 print tot_time t = t+1 while(cap.isOpened() and ret): print t cap.set(cv2.CAP_PROP_POS_FRAMES,skip_frames*t); ret, frame = cap.read() new_frame[:,:,:]=get_new_frame(frame,inference_lev) tic=time.time() corr_frame[:,:]=corrConv.fastCorr(old_frame,new_frame,corr_support) print time.time()-tic bitmask[:,:]=np.uint8(corr_frame>confidence)*255 bitmask[:,:]=cv2.erode(bitmask,np.ones((erode_support,erode_support))) #bitmask[:,:]=cv2.morphologyEx(cv2.morphologyEx(bitmask,cv2.MORPH_CLOSE,np.ones((morph_support,morph_support))),cv2.MORPH_OPEN,np.ones((morph_support,morph_support))) #bitmask[:,:]= for color in range(num_channels): mask_frame[:,:,color]=bitmask cv2.imshow(str(t),(mask_frame*255)*new_frame) out_frame[:,:,:]=pyr_blender.maskOut(frame,mask_frame) tle=pyr_blender.get_top_level_energy() if not(started): bit_frame[:,:]=bit_frame|(bitmask==255) if np.product(bit_frame): started=True print "started"
import numpy as np import cv2 import corrConv im1 = cv2.imread('./slides/no-u-final-slide525.png') im2 = cv2.imread('./slides/no-u-final-slide648.png') results = corrConv.fastCorr(im1, im2, 5) results = results * 255 results = results.astype(np.uint8) cv2.imshow('results', results) cv2.waitKey(0) cv2.imwrite('./results/slide525.png', im1) cv2.imwrite('./results/slide648.png', im2) cv2.imwrite('./results/correlation.png', results) #cv2.imshow('image', im1) #cv2.waitKey(0)
sad=0 while(sad<thresh): cap.set(cv2.CAP_PROP_POS_FRAMES,t*skip_frames); ret,frame=cap.read() this_frame[:,:,:]=frame print t print sad sad=np.sum(np.abs(this_frame-last_frame)) t = t+1 print "out" last_frame[:,:,:]=frame #pyr_blender=pyrMaskiir.pyrMaskiir(frame,True,nlevs,inference_lev,r) curr_frame[:,:,:]=frame now_frame[:,:,:]=get_new_frame(frame,inference_lev) corr_frame[:,:]=corrConv.fastCorr(old_frame,now_frame,corr_support) bit_back[:,:]=corr_frame>confidence tle=0 print tot_time bounce=False while(cap.isOpened() and ret): print t #cap.set(cv2.CAP_PROP_POS_FRAMES,skip_frames*t); #ret, frame = cap.read() sad=0 while(sad<thresh): cap.set(cv2.CAP_PROP_POS_FRAMES,t*skip_frames); ret,frame=cap.read() this_frame[:,:,:]=frame
import numpy as np import cv2 import corrConv import pyrTest nums=[77,199,321,369,463,581,684,794,860] old=cv2.pyrDown(cv2.imread("./correlate/slidetest/fs4.png")) otle=pyrTest.abs_tle_im(old) resultsdir='./slide_debug/' for num in nums: new=cv2.pyrDown(cv2.imread("./correlate/slidetest/fs"+str(num)+".png")) corrpic=corrConv.fastCorr(old,new,13) cp=np.dstack((corrpic,corrpic,corrpic)) print cp.shape ntle=pyrTest.abs_tle_im(new) info_kept=np.multiply(otle,np.float64(cp>0.8)) p=pyrTest.rep_3d_name(np.subtract(otle,info_kept),'ilost'+str(num)) cv2.imwrite(resultsdir+'ilost'+str(num)+'.png',p) info_lost=np.sum(np.subtract(otle,info_kept)) print info_lost info_retained=np.multiply(ntle,np.float64(cp>0.8)) info_gained=np.sum(np.subtract(ntle,info_retained)) p=pyrTest.rep_3d_name(np.subtract(ntle,info_retained),'igained'+str(num)) cv2.imwrite(resultsdir+'igot'+str(num)+'.png',p) print info_gained if info_gained<info_lost: print "better "+str(num)