if n_classes_hist < 2: n_classes_hist = 20 # default value print( "n_classes_hist should not be inferior than 2. Assigned to default value (20)." ) events = np.load('events_eruption_v8.npy', fix_imports=True, encoding='latin1') #events=np.ones((7, 10),dtype=np.float32) tiempos = np.zeros(1) for i in range(1): start = time.time() xcm_pos, xclags_pos, xcm_neg, xclags_neg, max_hist, min_hist =\ compute_correlation(events, 250, num_threads, chunk_size, threshold, n_classes_hist) diff_time = time.time() - start print("Execution finished in: " + str(diff_time)) tiempos[i] = diff_time print("Max: " + str(tiempos.max()) + " Mean: " + str(tiempos.mean()) + " Min: " + str(tiempos.min())) xcm_pos = csr_matrix(xcm_pos, dtype=np.float32) xclags_pos = csr_matrix(xclags_pos, dtype=np.int32) xcm_neg = csr_matrix(xcm_neg, dtype=np.float32) xclags_neg = csr_matrix(xclags_neg, dtype=np.int32) max_hist = csr_matrix(max_hist, dtype=np.int32) min_hist = csr_matrix(min_hist, dtype=np.int32) save_npz('out_xcm_pos.npz', xcm_pos, compressed=True)
num_threads = int(sys.argv[1]) threshold = float(sys.argv[2]) initialiseRunTime() events = np.load('events_eruption_v8.npy', fix_imports=True, encoding='latin1') #events=np.ones((7, 10),dtype=np.float32) times_loop = 1 tiempos = np.zeros(times_loop) print("The number of threads is: " + str(num_threads)) for i in range(times_loop): start = time.time() xcm_pos, xclags_pos, xcm_neg, xclags_neg = compute_correlation( events, 256, num_threads, threshold) diff_time = time.time() - start print("Execution finished in: " + str(diff_time)) tiempos[i] = diff_time print("Max: " + str(tiempos.max()) + " Mean: " + str(tiempos.mean()) + " Min: " + str(tiempos.min())) xcm_pos = csr_matrix(xcm_pos, dtype=np.float32) xclags_pos = csr_matrix(xclags_pos, dtype=np.int32) xcm_neg = csr_matrix(xcm_neg, dtype=np.float32) xclags_neg = csr_matrix(xclags_neg, dtype=np.int32) save_npz('out_xcm_pos.npz', xcm_pos, compressed=True) save_npz('out_xcl_pos.npz', xclags_pos, compressed=True) save_npz('out_xcm_neg.npz', xcm_neg, compressed=True)
nGPUS = int(sys.argv[1]) threshold = float(sys.argv[2]) initialiseRunTime(nGPUS) events = np.load('events_eruption_v8.npy', fix_imports=True, encoding='latin1') #events=np.ones((7, 10),dtype=np.float32) times_loop = 1 tiempos = np.zeros(times_loop) print("The number of gpus to use is: " + str(nGPUS)) for i in range(times_loop): start = time.time() xcm_pos, xclags_pos, xcm_neg, xclags_neg, python_time = compute_correlation( events, 256, nGPUS, threshold) diff_time = time.time() - start - python_time print("Execution finished in: " + str(diff_time)) tiempos[i] = diff_time print("Max: " + str(tiempos.max()) + " Mean: " + str(tiempos.mean()) + " Min: " + str(tiempos.min())) xcm_pos = csr_matrix(xcm_pos, dtype=np.float32) xclags_pos = csr_matrix(xclags_pos, dtype=np.int32) xcm_neg = csr_matrix(xcm_neg, dtype=np.float32) xclags_neg = csr_matrix(xclags_neg, dtype=np.int32) save_npz('out_xcm_pos.npz', xcm_pos, compressed=True) save_npz('out_xcl_pos.npz', xclags_pos, compressed=True) save_npz('out_xcm_neg.npz', xcm_neg, compressed=True)
import numpy as np import time from correlation_lib import compute_correlation events = np.load('events_eruption_v8.npy', fix_imports=True, encoding='latin1') #events=np.ones((128, 1500),dtype=np.float64) num_threads = 4 tiempos = np.zeros(1) for i in range(1): start = time.time() xcm_pos, xclags_pos, xcm_neg, xclags_neg = compute_correlation( events, 250, num_threads) diff_time = time.time() - start print("Execution finished in: " + str(diff_time)) tiempos[i] = diff_time print("Max: " + str(tiempos.max()) + " Mean: " + str(tiempos.mean()) + " Min: " + str(tiempos.min())) np.savetxt('xcm_v1_neg.txt', xcm_neg, delimiter='\t', fmt='%6.3f') np.savetxt('xcl_v1_neg.txt', xclags_neg, delimiter='\t', fmt='%6.0f') np.savetxt('xcm_v1_pos.txt', xcm_pos, delimiter='\t', fmt='%6.3f') np.savetxt('xcl_v1_pos.txt', xclags_pos, delimiter='\t', fmt='%6.0f')
import numpy as np import time from correlation_lib import compute_correlation events = np.load('events_eruption_v8.npy', fix_imports=True, encoding='latin1') #events=np.ones((128, 1500),dtype=np.float64) tiempos = np.zeros(1) for i in range(1): start = time.time() xcm_pos, xclags_pos, xcm_neg, xclags_neg = compute_correlation(events, 250) diff_time = time.time() - start print("Execution finished in: " + str(diff_time)) tiempos[i] = diff_time print("Max: " + str(tiempos.max()) + " Mean: " + str(tiempos.mean()) + " Min: " + str(tiempos.min())) np.savetxt('xcm_v1_neg.txt', xcm_neg, delimiter='\t', fmt='%6.3f') np.savetxt('xcl_v1_neg.txt', xclags_neg, delimiter='\t', fmt='%6.0f') np.savetxt('xcm_v1_pos.txt', xcm_pos, delimiter='\t', fmt='%6.3f') np.savetxt('xcl_v1_pos.txt', xclags_pos, delimiter='\t', fmt='%6.0f')