Example #1
0
def merge(self, to_merge, conf):
    if type(to_merge) is EMResult:
        to_merge = [to_merge]

    # Is it useful to merge?
    if len(to_merge) >= 1:
        result = EMResult(task_id=self.request.id)

        # If we are attacking, merge the correlations
        # TODO this can be cleaned up
        if conf_has_op(conf, 'attack') or conf_has_op(
                conf, 'memattack') or conf_has_op(conf, 'spattack'):
            # Get size of correlations
            shape = to_merge[
                0].correlations._n.shape  # TODO fixme init hetzelfde als in attack

            # Init result
            result.correlations = CorrelationList(shape)

            # Start merging
            for m in to_merge:
                result.correlations.merge(m.correlations)
        elif conf_has_op(
                conf, 'dattack'
        ):  # TODO just check for presence of to_merge.distances instead of doing this
            shape = to_merge[0].distances._n.shape
            result.distances = DistanceList(shape)

            for m in to_merge:
                result.distances.merge(m.distances)
        elif conf_has_op(conf, 'pattack'):
            shape = to_merge[0].probabilities.shape
            result.probabilities = np.zeros(shape)

            for m in to_merge:
                result.probabilities += m.probabilities
        elif conf_has_op(conf, 'keyplot'):
            result.means = {}

            tmp = defaultdict(lambda: [])
            for m in to_merge:
                for key, mean_traces in m.means.items():
                    tmp[key].extend(mean_traces)

            for key, mean_traces in tmp.items():
                all_traces = np.array(mean_traces)
                print("Merging %d traces for subkey value %s" %
                      (all_traces.shape[0], key))
                result.means[key] = np.mean(all_traces, axis=0)

        # Clean up tasks
        if conf.remote:
            for m in to_merge:
                logger.warning("Deleting %s" % m.task_id)
                app.AsyncResult(m.task_id).forget()

        return result
    else:
        return None
Example #2
0
    def test_update(self):
        test_array = np.array([[1, 2], [3, 5], [4, 5], [4, 8]])
        x = test_array[:, 0]
        y = test_array[:, 1]

        clist1 = CorrelationList(1)
        clist1.update(0, x, y)
        clist2 = CorrelationList([1, 1])
        clist2.update((0, 0), x, y)

        # Checks
        self.assertAlmostEqual(clist1[0], np.corrcoef(x, y)[1, 0], places=13)
        self.assertAlmostEqual(clist2[0, 0],
                               np.corrcoef(x, y)[1, 0],
                               places=13)
Example #3
0
def spattack_trace_set(trace_set, result, conf=None, params=None):
    logger.info("spattack %s" % (str(params) if not params is None else ""))

    num_keys = conf.key_high - conf.key_low
    num_outputs_per_key = LeakageModel.get_num_outputs(conf) // num_keys

    # Init if first time
    if result.correlations is None:
        result.correlations = CorrelationList(
            [256, 1])  # We only have 1 output point (correlation)

    if not trace_set.windowed:
        logger.warning("Trace set not windowed. Skipping attack.")
        return

    if trace_set.num_traces <= 0:
        logger.warning("Skipping empty trace set.")
        return

    hypotheses = np.empty([256, trace_set.num_traces, num_outputs_per_key])

    # 1. Build hypotheses for all 256 possibilities of the key and all traces
    leakage_model = LeakageModel(conf)
    for subkey_guess in range(0, 256):
        for i in range(0, trace_set.num_traces):
            hypotheses[subkey_guess, i, :] = leakage_model.get_trace_leakages(
                trace=trace_set.traces[i],
                key_byte_index=conf.subkey,
                key_hypothesis=subkey_guess)

    # 2. Given point j of trace i, calculate the correlation between all hypotheses
    for i in range(0, trace_set.num_traces):
        k = conf.subkey - conf.key_low

        # Get measurements (columns) from all traces for this subkey
        measurements = trace_set.traces[i].signal[num_outputs_per_key *
                                                  k:num_outputs_per_key *
                                                  (k + 1)]

        # Correlate measurements with 256 hypotheses
        for subkey_guess in range(0, 256):
            # Update correlation
            result.correlations.update((subkey_guess, 0),
                                       hypotheses[subkey_guess,
                                                  i, :], measurements)
Example #4
0
def memattack_trace_set(trace_set, result, conf=None, params=None):
    logger.info("memattack %s" % (str(params) if not params is None else ""))
    if result.correlations is None:
        result.correlations = CorrelationList([16, 256, trace_set.window.size])

    for byte_idx in range(0, conf.key_high - conf.key_low):
        for j in range(0, trace_set.window.size):
            # Get measurements (columns) from all traces
            measurements = np.empty(trace_set.num_traces)
            for i in range(0, trace_set.num_traces):
                measurements[i] = trace_set.traces[i].signal[j]

            # Correlate measurements with 256 hypotheses
            for byte_guess in range(0, 256):
                # Update correlation
                hypotheses = [hw[byte_guess]] * trace_set.num_traces
                result.correlations.update((byte_idx, byte_guess, j),
                                           hypotheses, measurements)
Example #5
0
def attack_trace_set(trace_set, result, conf=None, params=None):
    """
    Perform CPA attack on a trace set. Assumes the traces in trace_set are real time domain signals.
    """
    logger.info("attack %s" % (str(params) if not params is None else ""))

    if not trace_set.windowed:
        logger.warning("Trace set not windowed. Skipping attack.")
        return

    if trace_set.num_traces <= 0:
        logger.warning("Skipping empty trace set.")
        return

    # Init if first time
    if result.correlations is None:
        result.correlations = CorrelationList([256, trace_set.window.size])

    hypotheses = np.empty([256, trace_set.num_traces])

    # 1. Build hypotheses for all 256 possibilities of the key and all traces
    leakage_model = LeakageModel(conf)
    for subkey_guess in range(0, 256):
        for i in range(0, trace_set.num_traces):
            hypotheses[subkey_guess, i] = leakage_model.get_trace_leakages(
                trace=trace_set.traces[i],
                key_byte_index=conf.subkey,
                key_hypothesis=subkey_guess)

    # 2. Given point j of trace i, calculate the correlation between all hypotheses
    for j in range(0, trace_set.window.size):
        # Get measurements (columns) from all traces
        measurements = np.empty(trace_set.num_traces)
        for i in range(0, trace_set.num_traces):
            measurements[i] = trace_set.traces[i].signal[j]

        # Correlate measurements with 256 hypotheses
        for subkey_guess in range(0, 256):
            # Update correlation
            result.correlations.update(
                (subkey_guess, j), hypotheses[subkey_guess, :], measurements)
Example #6
0
    def test_max(self):
        test_array_1 = np.array([[1, 2], [3, 5], [4, 5], [4, 8]])

        test_array_2 = np.array([[4, 3], [5, 4], [6, 1], [8, 8]])

        test_array_3 = np.array([[-1, 1], [-2, 2], [-3, 3], [-4, 4]])

        x1 = test_array_1[:, 0]
        y1 = test_array_1[:, 1]
        x2 = test_array_2[:, 0]
        y2 = test_array_2[:, 1]
        x3 = test_array_3[:, 0]
        y3 = test_array_3[:, 1]

        clist = CorrelationList([1, 3])
        clist.update((0, 0), x1, y1)
        clist.update((0, 1), x2, y2)
        clist.update((0, 2), x3, y3)

        max_corr_over_points = np.max(np.abs(clist[0, :]))
        self.assertEqual(max_corr_over_points, 1.0)
Example #7
0
    def test_merge(self):
        test_array_1 = np.array([[1, 2], [3, 5], [4, 5], [4, 8]])

        test_array_2 = np.array([[4, 3], [5, 4], [6, 1], [8, 8]])

        test_array_check = np.array([[1, 2], [3, 5], [4, 5], [4, 8], [4, 3],
                                     [5, 4], [6, 1], [8, 8]])

        x1 = test_array_1[:, 0]
        y1 = test_array_1[:, 1]
        x2 = test_array_2[:, 0]
        y2 = test_array_2[:, 1]
        x_check = test_array_check[:, 0]
        y_check = test_array_check[:, 1]

        c1 = CorrelationList(1)
        c1.update(0, x1, y1)

        c2 = CorrelationList(1)
        c2.update(0, x2, y2)

        c3 = CorrelationList(1)
        c3.merge(c1)
        c3.merge(c2)

        self.assertAlmostEqual(c3[0],
                               np.corrcoef(x_check, y_check)[1, 0],
                               places=13)