def coreFunc(a):
     """runs the below for an angle, a
     Allows multiprocessing across a range of values for a
     """
     i,d,a = a
     model = Model(x0, pot=pot, rng=rng, step_size = d,
       n_steps = n_steps, rand_steps=False)
     
     c = acorr.Autocorrelations_1d(model)
     c.runModel(n_samples=n_samples, n_burn_in=n_burn_in, mixing_angle = a, verbose=False, verb_pos=i)
     acs = c.getAcorr(separations, opFn, norm = False)
     
     # get parameters generated
     pacc = c.model.p_acc
     pacc_err = np.std(c.model.sampler.accept.accept_rates)
     ans = errors.uWerr(c.op_samples, acorr=acs)         # get errors
     op_av, op_diff, _, itau, itau_diff, _, acns = ans             # extract data
     w = errors.getW(itau, itau_diff, n=n_samples)       # get window length
     if not np.isnan(w):
         acns_err = errors.acorrnErr(acns, w, n_samples)     # get error estimates
         acs = acns
     else:
         acns_err = np.full(acs.shape, np.nan)
         itau = itau_diff = np.nan
     
     return op_av, op_diff, acs, acns_err, itau, itau_diff, pacc, pacc_err, w
Example #2
0
    def coreFunc(a):
        """runs the below for an angle, a"""
        i, a, n_samples = a
        model = Model(
            x0,
            pot=pot,
            spacing=spacing,  # set up model
            rng=rng,
            step_size=step_size,
            n_steps=n_steps,
            rand_steps=rand_steps)
        c = acorr.Autocorrelations_1d(model)  # set up autocorrs
        c.runModel(
            n_samples=n_samples,
            n_burn_in=n_burn_in,  # run MCMC
            mixing_angle=a,
            verbose=explicit_prog,
            verb_pos=i)
        cfn = opFn(c.model.samples)  # run func on HMC samples

        # get parameters generated
        p = c.model.p_acc  # get acceptance rates at each M-H step

        # Calculating integrated autocorrelations
        ans = errors.uWerr(cfn)
        xx, f_diff, _, itau, itau_diff, itaus, _ = ans
        w = errors.getW(itau, itau_diff, n=cfn.shape[0])
        out = itau, itau_diff, f_diff, w
        return xx, p, itau, itau_diff, f_diff, w
def preparePlot(op_samples,
                ans,
                n,
                itau_theory=None,
                acn_theory=None,
                mcore=False):
    """Prepares the plot according to the output of uWerr
    
    Required Inputs
        op_samples :: np.ndarray :: function acted upon the HMC samples
        ans :: tuple :: output form uWerr
        n   :: int   :: number of samples from MCMC
    
    Optional Input
        itau_theory   :: float :: theoretical iTau value
        acn_theory    :: float :: theoretical ac values plotted against ficticous time NOT window length
        mcore :: bool :: flag that ans is a nested list of l_ans = [ans, ans, ...]
    """

    f_aav, f_diff, f_ddiff, itau, itau_diff, itaus, acn = ans

    if not np.isnan(itau):
        w = errors.getW(itau, itau_diff, n)  # get window
        l = w * 2
        itaus_diff = errors.itauErrors(itaus, n=n)  # calcualte error in itau
        acn_diff = errors.acorrnErr(acn, w, n)  # note acn not ac is used
        itau_label = r"$\tau_{\text{int}}(w_{\text{best}} = " + r"{}) = ".format(int(w)) \
            + r"{:.2f} \pm {:.2f}$".format(itau, itau_diff)
    else:
        w = np.nan
        l = acn.size // 2
        itaus_diff = np.zeros(acn.shape)
        acn_diff = np.zeros(acn.shape)
        itau_label = r"$\tau_{\text{int}}(w_{\text{best}}:\ \text{n/a}) = \text{n/a}$"

    # a quick hack
    l = min(acn.size, itaus.size, l)

    if acn_theory is not None: acn_theory = acn_theory[:l]
    g_int = np.cumsum(np.nan_to_num(acn[1:l] /
                                    acn[0]))  # recreate the g_int function
    g = np.asarray([errors.gW(t, v, 1.5, n) for t, v in enumerate(g_int, 1)
                    ])  # recreate the gW function

    x = np.arange(l)  # same size for itaus and acn
    g = np.insert(g, 0, np.nan)  # g starts at x[1] not x[0]

    # create items for plotting
    gta = (g[:l], None, ''), (itaus[:l], itaus_diff[:l], itau_label,
                              itau_theory), (acn[:l], acn_diff[:l], '',
                                             acn_theory)
    return x, gta, w
Example #4
0
    def coreFunc(a):
        """runs the below for an angle, a
        Allows multiprocessing across a range of values for a
        """
        i, a = a
        model = Model(x0,
                      pot=pot,
                      spacing=spacing,
                      rng=rng,
                      step_size=step_size,
                      n_steps=n_steps,
                      rand_steps=rand_steps)

        c = acorr.Autocorrelations_1d(model)
        c.runModel(n_samples=n_samples,
                   n_burn_in=n_burn_in,
                   mixing_angle=a,
                   verbose=True,
                   verb_pos=i)
        store.store(c.model.samples, file_name, '_samples')
        store.store(c.model.traj, file_name, '_trajs')
        acs = c.getAcorr(separations,
                         opFn,
                         norm=False,
                         prll_map=prll_map,
                         max_sep=50)  # non norm for uWerr

        # get parameters generated
        traj = np.cumsum(c.trajs)
        p = c.model.p_acc
        xx = c.op_mean
        acorr_seps = c.acorr_ficticous_time
        acorr_counts = c.acorr_counts
        store.store(p, file_name, '_probs')
        store.store(acs, file_name, '_acs')

        ans = errors.uWerr(c.op_samples, acorr=acs)  # get errors
        _, _, _, itau, itau_diff, _, acns = ans  # extract data
        w = errors.getW(itau, itau_diff, n=n_samples)  # get window length
        acns_err = errors.acorrnErr(acns, w, n_samples)  # get error estimates

        if rand_steps:  # correct for N being different for each correlation
            acns_err *= np.sqrt(n_samples) / acorr_counts

        return xx, acns, acns_err, p, w, traj, acorr_seps
separations = np.linspace(min_sep, max_sep, (max_sep - min_sep) / res + 1)

# multicore
result = prll_map(aFn, separations, verbose=True)
a, counts = zip(*result)

a = np.asarray(a)  # the autocorrelation array
counts = np.array(counts)  # the counts at each separation
# mask = 1-np.isnan(a)
# a = a[mask]
a = a * counts
# grab errors
print 'getting errors...'
ans = uWerr(op_samples, a)
_, _, _, itau, itau_diff, _, acns = ans  # extract data
my_w = getW(itau, itau_diff, n=n_samples)  # get window length
my_err = acorrnErr(acns, my_w, n_samples)  # get autocorr errors
my_err *= np.sqrt(n_samples) / np.sqrt(counts)

# theory calclations
th_x = np.linspace(min_sep, max_sep, 1000)
th = np.array([hmc(p, phi, r, i) for i in th_x])

from scipy.optimize import curve_fit

fn = lambda x, a, b, c: a * np.cos(b * x)**2 + c
expFn = lambda x, a, b, c: a * np.exp(-b * x) + c
cos_sq = curve_fit(fn, separations[:50], acns[:50])
exp_fit = curve_fit(expFn, separations[1:80], counts[1:80])

norm_cnt = expFn(0, *exp_fit[0]) / counts[1]
Example #6
0
print 'Comparing autocorrelation calculations...'
# assert that the autocorrelation routine is the same
av_xx = comparison_xx.mean()
norm = ((comparison_xx-av_xx)**2).mean()
my_acorr = np.asarray(map(lambda s: myAcorr(comparison_xx, av_xx, s), np.asarray(separations)))

christian_class = Christian_Autocorrelation(comparison_xx)
christian_acorr = christian_class.acf()[:c_len]

christian_acorr = np.asarray(christian_acorr)
diffs = christian_acorr[:my_acorr.size] - my_acorr
print " > av. difference: {}".format(diffs.mean())

print 'Checking integration window calculation:'
christian_tint, christian_dtint, christian_w = christian_class.tauintW(False)
_,_,my_w = windowing(comparison_xx, av_xx, 1.0, comparison_xx.size, fast=True)

print "Christian Window:{}".format(christian_w)
print "My Window:{}".format(my_w)

ans = uWerr(comparison_xx, acorr=my_acorr)   # get errors
_, _, _, itau, itau_diff, _, acns = ans             # extract data
my_w = getW(itau, itau_diff, n=comparison_xx.size)       # get window length

my_err = acorrnErr(acns, my_w, comparison_xx.size)     # get autocorr errors
christian_acorr = np.asarray(christian_acorr)
christian_err = acorrnErr(christian_acorr, christian_w, comparison_xx.size)

all_plot = preparePlot(christian_acorr[:2*my_w], acns[:2*my_w], my_err[:2*my_w], christian_err[:2*my_w])
store(all_plot, file_name, '_allPlot')
plot(save = saveOrDisplay(save, file_name+"_compareAc"), **all_plot)