def predict(request: Request): tasks = BackgroundTasks() api = local_cache["api"] predictor_impl = local_cache["predictor_impl"] kwargs = build_predict_kwargs(request) prediction = predictor_impl.predict(**kwargs) if isinstance(prediction, bytes): response = Response(content=prediction, media_type="application/octet-stream") elif isinstance(prediction, str): response = Response(content=prediction, media_type="text/plain") elif isinstance(prediction, Response): response = prediction else: try: json_string = json.dumps(prediction) except Exception as e: raise UserRuntimeException( str(e), "please return an object that is JSON serializable (including its nested fields), a bytes object, a string, or a starlette.response.Response object", ) from e response = Response(content=json_string, media_type="application/json") if local_cache["provider"] != "local" and api.monitoring is not None: try: predicted_value = api.monitoring.extract_predicted_value(prediction) api.post_monitoring_metrics(predicted_value) if ( api.monitoring.model_type == "classification" and predicted_value not in local_cache["class_set"] ): tasks.add_task(api.upload_class, class_name=predicted_value) local_cache["class_set"].add(predicted_value) except: cx_logger().warn("unable to record prediction metric", exc_info=True) if util.has_method(predictor_impl, "post_predict"): kwargs = build_post_predict_kwargs(prediction, request) request_thread_pool.submit(predictor_impl.post_predict, **kwargs) if len(tasks.tasks) > 0: response.background = tasks return response
def start_fn(): cache_dir = os.environ["CORTEX_CACHE_DIR"] provider = os.environ["CORTEX_PROVIDER"] spec_path = os.environ["CORTEX_API_SPEC"] project_dir = os.environ["CORTEX_PROJECT_DIR"] model_dir = os.getenv("CORTEX_MODEL_DIR") tf_serving_port = os.getenv("CORTEX_TF_BASE_SERVING_PORT", "9000") tf_serving_host = os.getenv("CORTEX_TF_SERVING_HOST", "localhost") if provider == "local": storage = LocalStorage(os.getenv("CORTEX_CACHE_DIR")) else: storage = S3(bucket=os.environ["CORTEX_BUCKET"], region=os.environ["AWS_REGION"]) has_multiple_servers = os.getenv("CORTEX_MULTIPLE_TF_SERVERS") if has_multiple_servers: with FileLock("/run/used_ports.json.lock"): with open("/run/used_ports.json", "r+") as f: used_ports = json.load(f) for port in used_ports.keys(): if not used_ports[port]: tf_serving_port = port used_ports[port] = True break f.seek(0) json.dump(used_ports, f) f.truncate() try: raw_api_spec = get_spec(provider, storage, cache_dir, spec_path) api = API( provider=provider, storage=storage, model_dir=model_dir, cache_dir=cache_dir, **raw_api_spec, ) client = api.predictor.initialize_client( tf_serving_host=tf_serving_host, tf_serving_port=tf_serving_port ) cx_logger().info("loading the predictor from {}".format(api.predictor.path)) predictor_impl = api.predictor.initialize_impl(project_dir, client, raw_api_spec, None) local_cache["api"] = api local_cache["provider"] = provider local_cache["client"] = client local_cache["predictor_impl"] = predictor_impl local_cache["predict_fn_args"] = inspect.getfullargspec(predictor_impl.predict).args if util.has_method(predictor_impl, "post_predict"): local_cache["post_predict_fn_args"] = inspect.getfullargspec( predictor_impl.post_predict ).args predict_route = "/" if provider != "local": predict_route = "/predict" local_cache["predict_route"] = predict_route except: cx_logger().exception("failed to start api") sys.exit(1) if ( provider != "local" and api.monitoring is not None and api.monitoring.model_type == "classification" ): try: local_cache["class_set"] = api.get_cached_classes() except: cx_logger().warn("an error occurred while attempting to load classes", exc_info=True) app.add_api_route(local_cache["predict_route"], predict, methods=["POST"]) app.add_api_route(local_cache["predict_route"], get_summary, methods=["GET"]) return app